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Abstract

We extend the canonical income process with persistent and tran-

sitory risk to cyclical shock distributions with left-skewness and excess

kurtosis. We estimate our income process by GMM for US household

data. We find countercyclical variance and procyclical skewness of per-

sistent shocks. All shock distributions are highly leptokurtic. The tax

and transfer system reduces dispersion and left-skewness. We then show

that in a standard incomplete-markets life-cycle model, first, higher-

order risk has sizable welfare implications, which depend on risk atti-

tudes; second, it matters quantitatively for the welfare costs of cyclical

idiosyncratic risk; third, it has non-trivial implications for self-insurance

against shocks.

Keywords: Idiosyncratic Income Risk, Cyclical Income Risk, Life-

Cycle Model

∗We thank Helge Braun for numerous helpful discussions as well as Chris Carroll, Russell Cooper,

Johannes Gierlinger, Fatih Guvenen, Daniel Harenberg, Greg Kaplan, Fatih Karahan, Serdar Ozkan, Luigi
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1 Introduction

It has long been established in the empirical macroeconomics literature that

individual income risk varies with the aggregate state of the economy, and

that this has important implications for the evaluation of many macroeco-

nomic questions that pertain to the business cycle. The traditional way to

capture cyclical changes of individual risk in macroeconomic analyses is to

model idiosyncratic shocks with a larger variance in aggregate contractions.

However, a growing body of recent empirical evidence challenges this focus

on the variance, and emphasizes important deviations of the distribution of

individual income changes from a (implicitly assumed) Gaussian distribution,

namely non-zero skewness and high kurtosis. We refer to these deviations as

capturing higher-order income risk.1

The first contribution of this paper is a novel parametric approach to es-

timate idiosyncratic labor income risk and its cyclicality. Within our estima-

tion framework we can transparently identify skewness and kurtosis of both

transitory and persistent shocks. To achieve this, we extend the canonical

income process to account for higher-order risk.2 We estimate the process for

household level labor income and for post government income (after taxes and

transfers) using household panel data from the United States.

The second contribution is that we systematically evaluate the role of

higher-order risk for three fundamental, and related, questions that pertain

to (cyclical) idiosyncratic risk. First, does higher-order idiosyncratic risk have

(economically relevant) implications for welfare? Second, does cyclical higher-

order idiosyncratic risk matter for the welfare costs of business cycles? Third,

does higher-order idiosyncratic risk matter for self-insurance through savings?

The answer to all three questions turns out to be yes. Our tool is a standard

incomplete-markets life-cycle model, in which households face an exogenous

1Of course, a stochastic income process does not necessarily measure risk. In our model
analysis the estimated income process is exogenous to agents, and thus within the model
the shocks of the stochastic process represent risk.

2Modelling individual (or household) income dynamics as a combination of transitory
and persistent components dates back at least to Gottschalk and Moffitt (1994). It then
became a standard input in life cycle household models of consumption and savings.
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income process estimated on post government income in the United States.

Throughout the analysis we focus on ex-post heterogeneity, and thus the only

source of inequality in the model is the risky idiosyncratic component of house-

hold income, which features the estimated variance, skewness, and kurtosis of

transitory and persistent income shocks.

In the estimation of our income process we do not impose any parametric

distribution function on the transitory and persistent components. We charac-

terize both shocks by their central moments and estimate those by Generalized

Method of Moments (GMM). Other than traditionally done in similar estima-

tions, we do not base the estimation solely on the variance-covariance matrix

of incomes. Instead, we use the second to fourth central moments and co-

moments. This allows us to identify variance, skewness, and kurtosis of the

distributions of the shock components. Through this we draw a richer image

of income dynamics within the transitory-persistent framework.

Our estimation procedure extends the approach taken in Storesletten et al.

(2004), who estimate an income process with state-contingent variance of the

persistent income shock. They analyze household-level income including gov-

ernment transfers from the Panel Study of Income Dynamics and find that

the variance is higher in contractions, i.e., they find countercyclical variance.3

Their identification of the state-dependent variance builds on the observation

that persistent shocks accumulate over the life cycle such that the distribution

of labor incomes observed for a given cohort widens with age. This implies that

cohorts that experienced different macroeconomic histories will feature differ-

ent cross-sectional age-specific variances of labor incomes—if the variance of

income shocks varies systematically over the business cycle.4 In our extended

version of the estimator, we allow the second to fourth central moments to be

state-contingent. Identification follows from the fact that the accumulated sec-

ond to fourth central moments differ across cohorts if these cohorts experience

different macroeconomic histories—again, if these moments differ systemati-

3This terminology has been introduced in the macroeconomic asset pricing literature,
see Mankiw (1986), Constantinides and Duffie (1996), and Storesletten, Telmer, and Yaron
(2007).

4History here refers to a sequence of expansions and contractions.
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cally over the business cycle.5 It is important to note that we include the third

and fourth central moments such that it does not affect the identification of

the second moments and the persistence of the shocks, which we identify us-

ing only the variance-covariance moment conditions. We then hold persistence

and second moments fixed and use the additional moment conditions only to

identify the third and fourth central moments of the shocks.

We apply the estimation to survey data from the Panel Study of Income Dy-

namics (PSID). The survey allows us to control for a rich set of household-level

information and to take into account several relevant transfer components. We

estimate two separate income processes at the household level: one for joint

labor income, and one for income after taxes and transfers. Comparison of the

corresponding estimates is informative about the success of the existing tax

and transfer scheme to dampen risk and its cyclicality.

We find that both transitory and persistent shocks to pre-government

earnings feature strong left-skewness, and that persistent shocks are signifi-

cantly cyclical: in contractions, their distribution is more dispersed and more

left-skewed. We also find that the existing tax and transfer system insures

against both types of income shocks. The distribution of both shocks to post-

government income (after taxes and transfers) is compressed relative to the

respective shocks to pre-government income, but persistent shocks remain sig-

nificantly cyclical. Finally, we find strong excess kurtosis of transitory and

persistent shocks. It is higher for post- than for pre-government earnings

suggesting that after redistribution more mass is concentrated in the center

relative to the tails of the distribution. These findings are in line with recent

empirical evidence as summarized below.

In our quantitative model, agents receive stochastic income following the

estimated process throughout their working life, after which they enter a re-

tirement phase and receive income through a pay-as-you-go pension system.

The shocks of the income process are drawn from a parametric distribution

5Note that we do not base identification on the stardardized moments (the coefficients of
skewness and kurtosis), which unlike the central moments do not simply accumulate while
a cohort ages.
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function,6 which we fit to the estimated central moments of the transitory and

persistent shocks. The distribution of persistent shocks varies systematically

over the business cycle as estimated in the data. We are interested in the

role of cyclical changes in idiosyncratic risk, and in the relevance of higher-

order risk, and thus we normalize all shocks in levels, which implies that the

economy does not feature aggregate risk. The only means of self-insurance

against income risk is a risk-free asset. Agents have recursive preferences over

consumption a la Epstein and Zin (1989, 1991), and Weil (1989), which allows

us to separately control the intertemporal elasticity of substitution and risk

aversion of households. We then assess whether the estimated deviation of

shocks from log-Normal shocks is relevant from a macroeconomic perspective.

First, does higher-order risk have economically relevant welfare implica-

tions relative to log-Normal shocks?—Yes. We evaluate welfare from an ex

ante perspective and show that the direction of welfare effects depends on rel-

ative risk attitudes of households (relative risk aversion, prudence, and tem-

perance). When risk attitudes are strong, the introduction of higher-order risk

has sizable negative welfare implications; when they are weak (specifically, for

log utility), the welfare effect can be positive. The dominant economic mech-

anism driving the welfare results is an expected reallocation of consumption

over the life-cycle. When facing riskier income, risk-averse agents have more

precautionary savings, and thus less consumption at young ages.7

Second, does higher-order risk matter for the welfare costs of business cy-

cles?—Yes. Since Lucas (1987, 2003) argued that the gains of smoothing the

business cycle beyond what the existing tax and transfer system does would be

small, several studies (summarized in Section 2) emphasized the role of both

ex-ante and ex-post heterogeneity for the welfare costs of business cycles. We

follow up on this, and explore the implications of cyclical higher-order income

6We use the Flexible Generalized Lambda Distribution developed by Freimer et al. (1988).
7It turns out that the mechanical relationship between the distribution of shocks in logs

and the distribution of shocks in levels is important for the results: introducing left-skewness
in logs (while holding the variance in logs constant) leads to a reduction of the variance in
levels. In other words, the introduction of third-order risk (left-skewness) mechanically
reduces second-order risk (variance) when characterizing the distribution in levels.
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risk. When we take into account excess kurtosis and skewness fluctuations,

we find welfare costs of business cycles computed as a consumption equivalent

variation which are 0.3%p (for relative risk aversion of 2) to 6.4%p (for relative

risk aversion of 4) larger than under log-Normal shocks.

Third, does the presence of higher-order risk affect the degree of self-

insurance?—Yes. We employ a measure of self-insurance motivated by Blun-

dell et al. (2008), who suggest to evaluate the degree of partial insurance

against income shocks by identifying transitory and permanent shocks to in-

come and estimate the pass-through of the identified shocks to consumption

changes. In the context of our model based analysis, we follow Kaplan and

Violante (2010), who study how much of the empirically estimated partial

insurance can be generated in a standard incomplete markets model. Our re-

sults show that when incorporating higher-order risk, the model can be brought

closer to the empirical estimates because the pass-through of income shocks

to consumption is weaker. However, we also find that this does not actually

represent better insurance against negative shocks. In a scenario with higher-

order risk agents have more precautionary savings (relative to a scenario in

which they face Normal shocks), which implies that consumption reacts weaker

to positive transitory and persistent shocks. Negative shocks actually trans-

late stronger into negative consumption changes, because the higher savings

do not suffice to smooth out shocks which are more pronounced relative to

Normal shocks. Therefore, we caution against using only the insurance coeffi-

cient introduced in the literature by Blundell et al. (2008) for the analysis of

the degree of partial insurance against income risk.

Before delving into the quantitative analysis, we analyze the effects of

higher-order risk in a simple two-period model, in which agents face risky

second period income. We analytically derive the implications of higher-order

risk for life-time utility and precautionary savings. We explore in detail how

risk attitudes of households matter delivering two main insights. First, larger

higher-order risk (in particular: left-skewness) can have positive welfare impli-

cations (with log-utility), and second and related, the reaction of precautionary

savings to larger higher-order risk is ambiguous. These results do not depend
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on a parametric assumption for the distribution of shocks and prove useful for

interpreting the quantitative results.

The remainder of the paper is structured as follows. Section 2 places our

analysis in the literature. Section 3 provides guidance for the analysis by dis-

cussing the role of higher-order risk in a simple two-period model. Section 4

presents our empirical approach and discusses identification of the income pro-

cess. Section 5 proceeds by presenting the results of applying our approach to

US earnings data from the PSID. Section 6 introduces the quantitative model

to analyze the economic implications of higher-order income risk, Section 7

discusses the quantitative results, and Section 8 concludes.

2 Relation to the Literature

On the empirical side, many studies analyze (residual) income inequality over

time. Prominent examples for the United States are Gottschalk and Moffitt

(1994), Heathcote et al. (2010), and Moffitt and Gottschalk (2011) who docu-

ment the development of residual inequality over the past decades. The focus

of our study is on the systematic variation of the distribution of income changes

over the business cycle. In a seminal contribution, Storesletten et al. (2004)

estimate a countercyclical variance of persistent shocks to household-level in-

come using PSID data. Building on the conceptual framework of Storesletten

et al. (2004), Bayer and Juessen (2012) focus on residual hourly wages (at the

household level) and estimate countercyclical dispersion of persistent shocks

in the United States (PSID). Our empirical approach nests Storesletten et al.

(2004) as a special case. Specifically, comparing our estimates to theirs, we

find a similar magnitude of the cyclicality of dispersion.

Recently, Guvenen et al. (2014) stress that the focus on the variance of

log income changes alone misses the main characteristic of how individual

risk varies with the aggregate state of the economy. They use an extensive

administrative dataset from US social security records for males. Their find-

ings suggest that individual downside risk is larger in a contraction, while

upside risk is smaller—this is reflected in a more pronounced left-skewness of
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the distribution of earnings changes, while the variance is unchanged over the

business cycle. Related, Busch et al. (2020) conduct a non-parametric analysis

of individual and household earnings dynamics in Germany, Sweden, France,

and the US. They find qualitatively the same dynamics as we do: individual

and household-level earnings changes are more left-skewed in contractionary

times, which suggests increased downside risk in contractions.

In follow-up work to Guvenen et al. (2014), Guvenen et al. (2016) doc-

ument that, in a given year, most individuals experience very small earnings

changes, while some workers experience very large changes of their earnings.

This is summarized by a high kurtosis—relative to what the conventional as-

sumption of log-normality implies. Druedahl and Munk-Nielsen (2018) use

a regression tree approach to document similar dynamics for Danish males.

Turning again to households, Arellano et al. (2017) document rich deviations

from the canonical income process for household-level earnings in the United

States (using survey data from the PSID) and Norway (using administrative

data); to which De Nardi et al. (2019) add additional evidence for the Nether-

lands (using administrative data). Relative to those recent papers on income

dynamics, we stick to the transitory-persistent decomposition of the canonical

income process and extend it by considering the second to fourth moments of

all shocks. Motivated by the recent empirical evidence, we allow the third mo-

ment of the persistent shocks to vary with the aggregate state of the economy,

similar to Huggett and Kaplan (2016). One other recent study is Angelopoulos

et al. (2019), who adapt a version of the GMM estimator developed in this

paper and document procyclical skewness of persistent shocks in Great Britain

using data from the British Household Panel Study.

Recently, the new evidence on richer earnings dynamics found its way into

macroeconomic studies. For example, Golosov et al. (2016) allow for time-

varying skewness of idiosyncratic risk in a study of optimal fiscal policy. Our

paper is part of a growing literature that explicitly analyzes the implications

of the new insights on richer earnings dynamics for macroeconomic questions.

Catherine (2019) analyzes the implications of procyclical skewness of idiosyn-

cratic income risk for the equity premium. McKay (2017) links procyclical
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skewness to aggregate consumption dynamics. Civale et al. (2017) analyze

implications of left-skewed and leptokurtic idiosyncratic shocks for the inter-

est rate and aggregate savings in an otherwise standard Aiyagari economy.

Closest to our paper is De Nardi et al. (2019), who apply the estimation of

Arellano et al. (2017) to household-level income data from the PSID. They

then feed this fitted income process into an otherwise standard incomplete

markets model to study the role of richer earnings dynamics for consumption

insurance and the welfare costs of idiosyncratic risk in comparison to a stan-

dard income process with log-normal shocks. Our analysis differs in two ways

from theirs. First, we consider cyclicality of idiosyncratic risk. Second, our

analysis provides a transparent link of non-Gaussian moments of the distribu-

tion of shocks to macroeconomic implications.

Our analysis of the role of higher-order risk for the welfare costs of business

cycles speaks to a rich literature that evolved after Lucas (1987). Imrohoroglu

(1989) was the first study that analyzed the role of idiosyncratic risk and in-

complete markets for the welfare costs of business cycles. Following up on

her analysis, several studies emphasize in particular the role of unemployment

risk (e.g., Krusell and Smith 1999, Krusell et al. 2009, Krebs, 2003, 2007,

and Beaudry and Pages 2001). Dolmas (1998) and Epaulard and Pommeret

(2003) both consider Epstein-Zin-Weil preferences, which is also the prefer-

ence specification employed by us.8 Closest to our paper is Storesletten et al.

(2001), who analyze the welfare consequences of cyclical idiosyncratic risk in

an incomplete markets model. They represent idiosyncratic risk by the income

process with cyclical variance of persistent shocks as estimated in Storesletten

et al. (2004). In the same fashion, we take our estimated income process as

an exogenous income process in an incomplete markets model and assess the

role of systematic changes of this risk over the business cycle.

8Epaulard and Pommeret (2003) study the relationship between cyclical variation and
growth in an endogenous growth model, which is a strand of the literature we do not talk
to. For an overview of studies that analyze the relationship between business cycles and
growth see Barlevy (2005).
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3 Higher-Order Risk in a Two-Period Model

3.1 Setup

Endowments. A household lives for two periods denoted by j ∈ {0, 1}. At

period 0 the household is endowed with an exogenous income of y0. Period 1

income is risky, y1 = exp(ε), for some random variable ε with distribution

function Ψ(ε), which features higher-order income risk. Households are born

with zero assets and, in the general formulation of the model, have access to a

risk-free savings technology with interest factor R = 1. Denoting by a1 savings

in period 1, the budget constraints in the two periods are

a1 = y0 − c0, c1 ≤ a1 + y1.

Preferences. We consider additively separable preferences over consump-

tion cj in the two periods of life, j ∈ {0, 1}. The per period utility function

takes the standard iso-elastic power utility form u(cj) = 1
1−θc

1−θ
j , where the

concavity parameter θ parameterizes risk attitudes. Thus preferences are given

by

V =





1
1−θ
(
c1−θ

0 +
∫
c1−θ

1 dΨ(ε)
)

for θ 6= 1

ln (c0) +
∫

ln (c0) dΨ(ε) for θ = 1.

Notice that θ captures both risk attitudes as well as the inverse of the

inter-temporal substitution elasticity. In the quantitative life-cycle model we

use recursive preferences a la Epstein and Zin (1989, 1991), and Weil (1989)

to distinguish the two aspects of preferences. In Appendix A.5 we show that

the theoretical analysis presented in this section extends naturally to recur-

sive preferences, and that the risk attitudes are the relevant component of

preferences behind consumption reactions to higher-order income risk. In the

following, we thus interpret θ as representing risk attitudes when appropriate.

Since we assume an interest rate of zero and no discounting of second-period

utility, there is no life-cycle savings motive in this simple model.
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3.2 Analysis

Hand-to-Mouth Consumers. We first analyze the role of higher-order risk

for hand-to-mouth consumers by shutting down access to the savings technol-

ogy through constraint a1 = 0.

Consider a fourth-order Taylor series approximation of the objective func-

tion around the mean of second period consumption, µc1 = E[c1] =
∫
c1dΨ(ε).

After some transformations, cf. Appendix A.1 and in line with, e.g., Eeckhoudt

and Schlesinger (2006), we find that

U ≈ c1−θ
0

1− θ +

(
1

1− θ −
θ

2
µc2 +

θ(1 + θ)

6
µc3 −

θ(1 + θ)(2 + θ)

24
µc4

)
, (1)

where we impose the restriction µc1 = 1 for expositional reasons (which is

irrelevant for the results pertaining to second- to fourth-order risk discussed

here). Note that under the assumption of the binding budget constraint,the

central moments9 of the level of consumption µck, k = 1, . . . , 4 coincide with

the respective moments µ
exp(ε)
k , k = 1, . . . , 4, of second period income exp(ε).

We make the following observations using the expression in (1). First, con-

sider changing one of the central moments of the distribution while holding

the others constant. An increase of the variance, µc2, or of the fourth central

moment, µc4, or a reduction of the third central moment, µc3, leads to expected

utility losses. Note that changing the third central moment while holding the

variance fixed implies changing the shape of the distribution as summarized

by the coefficient of skewness. Similarly, changing the fourth central moment

while holding variance fixed implies changing the relative size of the center

and tails of the distribution, as summarized by the coefficient of kurtosis. In

the remainder of the analysis, whenever we speak of an increase of risk, we

refer to a change of the distribution of shocks that entails at least one of these

changes (increasing second or fourth central moments, or decreasing the third

central moment). Second, the utility consequences of changes of risk are gov-

9The kth central moment of variable x is given by µxk = E (x− µx1)
k
.
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erned by relative risk attitudes,10 which in case of the employed power utility

function are all pinned down by θ. Stronger relative risk aversion θ implies

stronger adverse effects of increasing variance; stronger relative prudence 1+θ

implies stronger adverse effects of increasing negative skewness; and stronger

relative temperance 2 + θ implies stronger adverse effects of increasing kurto-

sis. Importantly, the role of higher-order risk increases exponentially in θ: the

weight attributed to risk attitudes on the variance is θ, on the third moment

is θ(1 + θ) and on the fourth moment is θ(1 + θ)(2 + θ). Third, for given θ the

relative importance of risk decreases in the order of risk, which is captured by

the weight terms of the Taylor approximation.

These observations play a crucial role for our quantitative evaluation. In

particular, while our estimates presented in Section 5.2 imply a pronounced

left-skewness and a strong excess kurtosis, which may lead to sizeable welfare

losses, the overall effect depends on the utility weight of this risk, and thus on

the calibration of θ. In Appendix A.2 we show that in the case of log utility,

the introduction of left-skewness generates welfare gains.

Precautionary Savings. We now assume that households have access to

a savings technology. Using the budget constraint in the utility function it is

straightforward to derive the Euler equation of the maximization problem as

(cf., e.g., Eeckhoudt and Schlesinger, 2008)

(y0 − a1)−θ = E
[
(exp(ε) + a1)−θ

]
≈ (1 + a1)−θ +

θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2 − θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 . (2)

Notice that the LHS is increasing, and the RHS is decreasing in a1 if µ
exp(ε)
3 is

small enough relative to µ
exp(ε)
2 and µ

exp(ε)
4 .11 Consider the effect of an increase

10The relative risk attitude of order n is given by − un(c)
un−1(c)c, where un(c) denotes the nth

derivative of the per-period utility function u(c).
11The RHS is deacreasing in a1 iff µ

exp(ε)
3 ≤ 3

(3+θ) (1 + a1)µ
exp(ε)
2 + (4+θ)

4 (1 + a1)
−1
µ
exp(ε)
4 .
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of risk of the income shock exp(ε) (through increasing the second or fourth

central moment, or reducing the third central moment). An increase of the

variance increases the RHS, scaled by the product of the measures of relative

prudence and relative risk aversion θ · (1 + θ). A reduction of the third central

moment increases the RHS, additionally scaled by the measure of relative

temperance (2 + θ). An increase of the fourth central moment increases the

RHS, additionally scaled by the measure of relative edginess (3 + θ).12 Similar

to what we saw in equation (1), the second to fourth moments are scaled by

additional weight factors 1
2(1+a1)2+θ

, 1
6(1+a1)3+θ

, and 1
24(1+a1)4+θ

, respectively.

Therefore, an increase of risk for a given a1 increases the RHS, which is

offset by an increase of savings a1.13 This result is very intuitive: ordinary

and higher-order income risk increases precautionary savings, through which

households reduce the adverse utility consequences of risk. The intensity of

the behavioral reaction crucially depends on risk attitudes as governed by θ.

4 Income Process with Higher-Order Risk

4.1 The Income Process

Let log income of household i of age j in year t be

yijt = f (Xijt, Yt) + ỹijt, (3)

where f (Xijt, Yt) is the deterministic component of income, i.e., the part that

can be explained by observable individual and aggregate characteristics, Xijt

and Yt, respectively, and ỹijt is the residual part of income, which is assumed

to be orthogonal to f (Xijt, Yt). The deterministic component f (Xijt, Yt) is a

linear combination of a cubic in age j, fage(j), the log of household size, year

fixed effects, and an education premium fEP (t) for college education, which

12The term edginess was coined by Lajeri-Chaherli (2004).
13Formally, it is straightforward to show this by taking the total differential of (2), cf.

Appendix A.4.
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we allow to vary over years t:

f (Xijt, Yt) = β0t + fage (j) + 1eit=cfEP (t) + βsize log (hhsizeijt) (4)

where fage (j) = βage1 j+βage2 j2+βage3 j3, fEP (t) = βEP0 +βEP1 t+βEP2 t2, and 1eit=c

is an indicator function that takes on value 1 for college-educated households.

Residual income ỹijt is the main object of interest in the analysis. We

model ỹijt as the sum of three components: a persistent component zijt, an

i.i.d. transitory shock εijt, and a idiosyncratic fixed effect χi. The idiosyncratic

fixed effect is a shock drawn once upon entering the labor market from a

distribution14 which is the same for every cohort. The persistent component

is modeled as an AR(1) process with innovation ηijt:

ỹijt = χi + zijt + εijt, where εijt ∼
iid
Fε, χi ∼

iid
Fχ (5a)

zijt = ρzij−1t−1 + ηijt, where ηijt ∼
id
Fη (s (t)) , (5b)

where Fχ, Fε, and Fη (s (t)) denote the density functions of χ, εijt, and ηijt,

respectively. We allow the density function of the persistent shock to de-

pend on the aggregate state of the economy in period t, denoted by s(t).

This income process is exactly the canonical income process (e.g., Moffitt and

Gottschalk, 2011). Unlike the canonical case, we do not (implicitly) assume

that the shocks to the log income process are symmetric. Instead of only

focussing on the variance of the shocks, we are interested in estimating the

second to fourth central moments of the density functions, and denote those

by µx2 , µx3 , and µx4 , for x ∈ {χ, ε, η(s)}.15

As in Storesletten et al. (2004), the economy can be in one of two aggre-

gate states, which we denote by E (expansion) and C (contraction). Thus, the

14Thus, we are estimating a random effects model.
15One potential disadvantage of using central moments to characterize the shocks in the

income process is that they are hard to interpret by themselves. However, in the samples we
use, the central moments of the cross-sectional income distribution are strongly correlated
with percentile-based counterparts to those moments. We are thus confident that the esti-
mated central moments—and the implied standardized moments skewness and kurtosis—do
capture the salient features of the distribution.
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central moments of the persistent shock µηk (s (t)) are equal to µη,Ek if s (t) = E

and equal to µη,Ck if s (t) = C, for k ∈ {2, 3, 4}. Both empirical evidence

(e.g., Blundell et al. 2008) and model-based analyses (e.g., Kaplan and Vi-

olante 2010) find that households can insure well against transitory shocks.

We therefore follow Storesletten et al. (2004) and only consider the cyclicality

of persistent income shocks, which have long-lasting effects in the context of a

life-cycle decision making problem. We still do capture skewness and kurtosis

of the (acyclical) transitory component and explore its quantitative role.

We assume that upon entering the labor market, in addition to drawing

the fixed effect χi, each worker draws the first realizations of transitory and

persistent shocks, εit and ηit, from the distributions Fε and Fη (s (t)), respec-

tively. Thus, the moments of the distribution of the persistent component for

the cohort entering in year t at age j = 0 are µk(zi0t) = µηk(s(t)).

4.2 GMM Approach to Estimation

We follow the common approach in the literature and estimate (3) and (5) in

two steps. In the first step, we estimate (3), which yields residuals ỹijt. In

the second step, we estimate the parameters of the stochastic process (5) by

fitting cross-sectional moments of the distribution of residual (log) income. As

is standard, the variance terms of all components of (5) can be identified by

the variance-covariance matrix. Similarly, the third and fourth central mo-

ments can be identified by third and fourth central moments and co-moments.

Let θ =
(
ρ, µχ2 , µ

ε
2, µ

η,E
2 , µη,C2 , µχ3 , µ

ε
3, µ

η,E
3 , µη,C3 , µχ4 , µ

ε
4, µ

η,E
4 , µη,C4

)
be the vector

of second-stage parameters, and let st summarize the history of aggregate

states up to year t.16 We denote central moments by µk (·) and co-moments

by µkl (·), where

µk (ỹijt; θ) = E
[
(ỹijt − E [ỹijt])

k |st
]

(6a)

µkl (ỹijt, ỹij+1t+1; θ) = E
[
(ỹijt − E [ỹijt])

k (ỹij+1t+1 − E [ỹij+1t+1])l |st
]
. (6b)

16Note that we need to condition only on st, not on st+1, because period t+ 1 shocks are
uncorrelated with all shocks accumulated up to period t.
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The imposed process implies the following moments of the distribution of

residual income at age j in year t:

µ2(ỹijt; θ) = µχ2 + µε2 + µ2(zijt) (7a)

µ11 (ỹijt, ỹij+1t+1; θ) = µχ2 + ρµ2(zijt) (7b)

µ3 (ỹijt; θ) = µχ3 + µε3 + µ3(zijt) (7c)

µ21 (ỹijt, ỹij+1t+1; θ) = µχ3 + ρµ3(zijt) (7d)

µ4 (ỹijt; θ) = µχ4 + µε4 + µ4(zijt) + 6 (µχ2µ
ε
2 + (µχ2 + µε2)µ2(zijt)) (7e)

µ31 (ỹijt, ỹij+1t+1; θ) = µχ4 + ρµ4(zijt) + 3 (µχ2µ
ε
2 + (µχ2 + ρ (µχ2 + µε2))µ2(zijt)) ,

(7f)

where µk(zijt), for k = 2, 3, 4 is shown in Appendix A.6.

A crucial implication of equations (7c) and (7e) is that the cross-sectional

distribution of ỹijt does not converge to a Normal distribution, as the third

and fourth central moments of the shocks accumulate over age. This allows

us to identify these higher-order moments of the shock distributions based on

cross-sectional moments as outlined below. Denote the empirical counterparts

of the moments by m2(·), m3(·), m4(·), m11(·), m21(·), and m31(·). This gives

the following set of moment conditions employed in the GMM estimation:

E
[
m2 (ỹijt)− µ2 (ỹijt; θ) |st

]
= 0 (8a)

E
[
m11 (ỹijt, ỹij+1t+1)− µ11 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (8b)

E
[
m3 (ỹijt)− µ3 (ỹijt; θ) |st

]
= 0 (8c)

E
[
m21 (ỹijt, ỹij+1t+1)− µ21 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (8d)

E
[
m4 (ỹijt)− µ4 (ỹijt; θ) |st

]
= 0 (8e)

E
[
m31 (ỹijt, ỹij+1t+1)− µ31 (ỹijt, ỹij+1t+1; θ) |st

]
= 0. (8f)

Huggett and Kaplan (2016) use a similar strategy based on second and third

central moments and co-moments, without resorting to pre-sample aggregate

information in the spirit of Storesletten et al. (2004) as we do. We use mo-

ment conditions (8a) and (8b) to estimate the variance parameters and the
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persistence ρ. Given an estimate for ρ, we then use moment conditions (8c)

and (8d) to estimate the third central moments. Likewise, given estimates

for ρ and the variance parameters, we use moment conditions (8e) and (8f) to

estimate the fourth central moments.

Identification. The use of cross-sectional moments for identification al-

lows us to exploit macroeconomic information that predates the micro panel,

thereby incorporating more business cycles in the analysis than covered by the

sample, as pointed out by Storesletten et al. (2004). Consider the persistent

component of the income process in equation (5b): the variance of the innova-

tions accumulate as a cohort ages, as can be seen from the theoretical moment

in equation (7a). If the innovation variance is higher in contractionary years,

then a cohort that lived through more contractions will have a higher income

variance at a given age than a cohort at the same age that lived through fewer

contractions, if the persistence is high.

Our extension of Storesletten et al. (2004) is based on the insight that

other central moments accumulate in a similar fashion, as seen in equations

(7c) and (7e). Consider the third central moment. If the probability of a large

negative income shock was higher (or that of a large positive shock lower)

during a contractionary period, then this would translate into the third central

moment of the shock being smaller (more negative) than in an expansion, i.e.,

µη,C3 < µη,E3 . For a given dispersion this implies a reduction of skewness (a

more left-skewed distribution). Comparing again two cohorts when they reach

a certain age, this would imply a more negative cross-sectional third central

moment for the cohort that worked through more contractions.

As seen in (7a), the sum (µχ2 + µε2) is identified as the intercept of the

variance profile over age. The same holds for (µχ3 + µε3) in (7c), which is

identified via the age profile of the third central moment. Considering the

sum in (7a), we see that the magnitude of the increase of the cross-sectional

variance over age identifies the variance of persistent shocks. The difference

between µη,C2 and µη,E2 is identified by the difference of the cross-sectional

variance of different cohorts of the same age. Likewise, the difference between
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µη,C3 and µη,E3 is identified by the difference of the cross-sectional third central

moment of different cohorts. Note that by restricting the transitory shocks to

not vary over the business cycle we do not bias the estimated cyclicality of

persistent shocks, which is identified via accumulated shock distributions.

Now consider the expressions for variance and covariance in equations (7a)

and (7b). The difference between the two expressions identifies µχ2 separately

from µε2. Likewise, the difference between the expressions for the third cen-

tral moment and co-moment, equations (7c) and (7d), identifies µχ3 separately

from µε3. Given ρ and the variance parameters µx2 for x ∈ {χ, ε, η(s)}, equa-

tions (7e) and (7f) identify the fourth central moments µx4 for x ∈ {χ, ε, η(s)}
in the same way as for the second and third central moments.

5 Estimation of the Income Process

5.1 Data and Sample Selection

We use data from the Panel Study of Income Dynamics (PSID), which inter-

views households in the United States annually from 1968 to 1997 and every

other year since then. The representative core sample consists of about 2,000

households in each wave, and we use data from 1977–2012.17 We estimate

the extended canonical income process at the household level for both pre-

and post-government household income. Household pre-government income is

defined as labor income before taxes, which we calculate as the sum of head

and spouse annual labor income. Post-government income is defined as house-

hold labor income plus transfers minus taxes. As measure of labor income we

use annual total labor income which includes income from wages and salaries,

bonuses, and the labor part of self-employment income. We impute taxes using

Taxsim, and add 50% of the estimated payroll taxes to the sum of head and

spouse labor incomes to obtain pre-government income. We aggregate trans-

fers to the household level and include measures of unemployment benefits,

17We do not use earlier waves because of poor coverage of income transfers before the
1977 wave.
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workers’ compensation, combined old-age social security and disability insur-

ance (OASI), supplemental security income, aid to families with dependent

children (AFDC), food stamps, and other welfare.

We deflate all nominal values with the annual CPI, and select households

if the household head is between 25 and 60 years of age. The minimum of

household pre- and post-government income needs to be above a constant

threshold, which is defined as the income from working 520 hours at half the

minimum wage. Central moments (especially of higher order) are imprecisely

estimated in small samples. We therefore estimate the moments for a given

year and age group based on a sample from a five-year window over age, which

also smoothes the age profiles of these moments.

Defining Business Cycles. In order to implement the estimator we classify

years as contractions or expansions. We initiate our definition on NBER peaks

and trough data. Given the sluggish synchronization of labor market outcomes

with the macroeconomic indicators that the NBER takes into account, we

expand the dating based on mean earnings of males in the PSID. The relevant

time period is 1942–2012. Given the dating of peaks and troughs, we classify

a year as a contraction if (i) it completely is in a contractionary period, which

is defined as the time from peak to trough, (ii) if the peak is in the first half of

the year and the contraction continues into the next year, (iii) if a contraction

started before the year and the trough is in the second half of the year. All

years that are not classified as contraction are classified as expansions. This

gives the following years as contractions: 1945, 1949, 1953, 1957, 1960, 1970,

1974, 1980–83, 1990–91, 2001–02, 2008–10, and 2012.

5.2 Estimation Results: Cyclical Idiosyncratic Risk

Illustration of Identification. Before turning to the estimation, in Fig-

ure 1 we plot the cross-sectional second and third central moments of residual

income used in the estimation, i.e., each marker denotes a moment for house-

holds of some age j in some year t, mk(ỹijt) for k = 2, 3. The moments are

plotted against the share of years classified as contractions out of all years a
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cohort went through since age 25 once reaching the given year. The pattern

that emerges is that a higher share of contractionary years correlates positively

with the cross-sectional second moments, and correlates negatively with the

cross-sectional third moments. These correlations identify the cyclicality of

the moments of the shocks in the esimated income process.

Figure 1: Cross-Sectional Moments by Aggregate History

(a) Second Cross-Sectional Moment (b) Third Cross-Sectional Moment

Notes: Cross-sectional moments of residual income are net of age effects. Share of con-
tractions for a given moment is the fraction of years classified as contraction since age 25.
The slopes of the fitted lines are 0.13 and –0.11 for m2 and m3, respectively. Moments for
shares of 0 or 1 are not displayed here for visualization reasons (they are used in the GMM
estimation).

Estimation. We now turn to the estimation results for household pre-govern-

ment labor income (before taxes and transfers) and household post-government

labor income (after taxes and transfers). We use the number of observations

that contribute to an empirical moment as weights for the moment conditions,

and this way assign more weight to those moments that are themselves esti-

mated more reliably in the data. As additional moment conditions we add the

averages over years of the second to fourth central moments of 1-5 year income

changes. This ensures that the estimated income process is consistent both

with moments of the cross-sectional distribution and with moments of income

changes. We give a collective weight of 10% to the average moments of changes.

In addition to the structure imposed so far, we hold the kurtosis of η fixed over

the business cycle. Let αi denote the ith standardized moment: αi = µi/µ
i/2
2 .
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Assuming αη4 (s (t)) = αη4 implies µη,C4 = αη4

(
µη,C2

)2

and µη,E4 = αη4

(
µη,E2

)2

.

This leaves us with 12 parameters that need to be estimated. We use moment

conditions (8a) and (8b) to estimate the variance parameters and the persis-

tence ρ. Given an estimate for ρ, we then use moment conditions (8c) and (8d)

to estimate the third central moments. Likewise, given estimates for ρ and the

variance parameters, we use moment conditions (8e) and (8f) to estimate the

fourth central moments. The third central moment of the cross-sectional dis-

tribution features a low-frequency change (see Panel (e) of Figure 2). In order

to accommodate this in the estimation, and to not confound the estimated

cyclicality, we add a linear trend to the third central moment of transitory

shocks. We report the time average of the implied moment. For inference, we

apply a block bootstrap procedure and resample households, which preserves

the autocorrelation structure of the original sample. We draw 1,000 bootstrap

samples. Table 1 shows the estimates, and Figure 2 illustrates the fit over age

and time of the estimated process for post government income, the income

variable we use in the quantitative analysis in Section 7 (see Appendix B for

the implied standardized moments).

Cyclical Dispersion. The first panel of Table 1 reports the persistence of

the AR(1) component of income along with the estimates of the variances of

the components of the income process estimated jointly. We estimate persis-

tence parameters (ρ) of .96 and .97 for pre and post government income, re-

spectively. The estimated variances of all components of the post-government

income process are smaller than their counterparts for pre-government income.

This is consistent with an interpretation that the existing tax and transfer sys-

tem effectively dampens the idiosyncratic risk faced by households. Both for

pre- and post-government income the estimates imply a countercyclical vari-

ance of persistent shocks: in aggregate downturns, the cross-sectional distribu-

tion of shocks is more dispersed. Our estimate of countercyclicality for post-

government income is quantitatively similar to the one estimated by Storeslet-

ten et al. (2004): the estimated standard deviation of persistent shocks is 62%

higher in aggregate contractions.
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Table 1: Estimation Results for Pre- and Post Government Income

Estimated Central Moments Implied Standardized Moments
HH Pre HH Post HH Pre HH Post

ρ 0.9602 0.9684
[0.9413; 0.9756] [0.9464; 0.9841]

µχ2 0.1592 0.1077
[0.1363; 0.1787] [0.0898; 0.1239]

µε2 0.1043 0.0752
[0.0947; 0.1131] [0.0676; 0.0815]

µη,C2 0.0375 0.0223
[0.0264; 0.0476] [0.0044; 0.0153]

µη,E2 0.0152 0.0085
[0.0099; 0.0229] [0.0044; 0.0153]

µχ3 −0.1130 −0.0522 −1.78 −1.48
[−0.1535;−0.0732] [−0.0788;−0.0257] [−2.48;−1.22] [−2.32;−0.79]

µε3 −0.1516 −0.0866 −4.50 −4.20
[−0.1624;−0.1375] [−0.0936;−0.0772] [−5.07;−3.98] [−4.80;−3.73]

µη,C3 −0.0331 −0.0164 −4.56 −4.93
[−0.0471;−0.0174] [−0.0261;−0.0062] [−6.67;−2.60] [−7.75;−2.18]

µη,E3 −0.0046 −0.0012 −2.47 −1.51
[−0.0128; 0.0036] [−0.0069; 0.0041] [−6.73; 2.35] [−7.90; 9.26]

µχ4 0.0620 0.0180 2.45 1.55
[0.0000; 0.1514] [0.0000; 0.0747] [0.00; 5.41] [0.00; 5.40]

µε4 0.4244 0.2297 38.98 40.65
[0.3622; 0.4859] [0.1924; 0.2661] [34.57; 44.97] [36.30; 47.71]

µη,C4 0.1357 0.0665 96.55 134.11
[0.0856; 0.1724] [0.0360; 0.0846] [61.03; 141.50] [81.83; 190.59]

µη,E∗4 0.0222 0.0097 96.55 134.11

Notes: Table shows estimated central moments for household earnings (HH Pre) and house-

hold income after taxes and transfers (HH Post). Brackets show 5th and 95th percentiles

of 1,000 bootstrap estimates (in the case of post government income, 997 of the bootstrap

iterations converge). ∗µη,E4 not separately estimated.
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Figure 2: Fit of Estimated Process for Post-Government Earnings

(a) Second Moment over Age (b) Third Moment over Age

(c) Fourth Moment over Age (d) Second Moment over Time

(e) Third Moment over Time (f) Fourth Moment over Time

Notes: Moments are cross-sectional central moments. For each moment, age and year
profiles are based on a regression of the moment on a set of age and year dummies. Blue
lines: empirical moments; red dashed lines: theoretical moments implied by point estimates;
shaded area denotes a 90% confidence band based on the bootstrap iterations.

Cyclical Skewness. The second panel of Table 1 reports the third central

moments. We find that all shock components estimated for pre-government

and post-government income processes have negative third central moments,

implying negative skewness of shocks. Comparing the post-government income

process to the pre-government income process, the third central moments are
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smaller in magnitude, as expected from the reduced dispersion. For both pre

and post government income, the third central moment of persistent shocks

is significantly negative in contractions; point estimates of the third central

moments of persistent shocks in expansions are also negative, however not

statistically different from zero. The second and third central moments to-

gether translate into the third standardized moment, the coefficient of skew-

ness, which is informative about the shape of the distribution and shown in

the last two columns of Table 1. The cyclicality of the third central moment is

stronger relative to the cyclicality of the second moment, which translates into

the standardized moment displaying pro-cyclicality. Thus, aggregate contrac-

tions are periods in which negative persistent shocks become relatively more

pronounced.

Excess Kurtosis. The third panel of Table 1 reports the fourth central

moments. We restrict the kurtosis of persistent shocks to not vary with the

aggregate state of the economy, i.e., αη4(s(t) = C) = αη4(s(t) = E). Again,

the last two columns of Table 1 list the implied standardized fourth moments

(coefficients of kurtosis). The fixed effects are very imprecisely estimated;

the point estimates imply relatively flat distributions (compared to a Normal

distribtion, which has a kurtosis of 3): the implied kurtosis coefficient at the

point estimates is 2.5 for pre-government income, and 1.55 for post-government

income. The transitory and persistent shocks are estimated to display very

pronounced excess kurtosis of about 39 and 97 for pre-government earnings,

and about 41 and 134 for post-government earnings. These estimates imply

that the distribution of post-government income shocks is more concentrated

in the center, while some households experience shocks that are more extreme

relative to the overall more compressed (in comparison to pre-government

income) distribution. Note that while these estimates of kurtosis seem very

high at first glance, they imply a good fit of the cross-sectional distribution

over age and over years as shown in Figure 2. Furthermore, the estimated

income process is in line with the average kurtosis of income changes.
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6 A Quantitative Model

6.1 The Economy

We now set up a quantitative version of the simple two-period model of Sec-

tion 3 by extending it to a standard multi-period life-cycle model with a

stochastic earnings process, a zero borrowing constraint, a fixed retirement

age, and an earnings-related retirement income. To calibrate higher-order risk

attitudes separately from the inter-temporal elasticity, we take Epstein-Zin-

Weil preferences a la Epstein and Zin (1989, 1991), and Weil (1989).

Endowments. Households earnings are exogenous and consist of a deter-

ministic age profile and a stochastic income component with transitory and

persistent shocks. The distribution of persistent shocks varies with the ag-

gregate state s ∈ {C,E}, which follows a Markov process with time-invariant

transition matrix Πs. We abstract from the aggregate effects of fluctuations

on wages and interest rates by holding both constant. In this sense there is

no aggregate risk, but cyclical idiosyncratic risk.

Households live from age j = 0 to age j = J . They retire at the exogenously

given retirement age jr. Labor income net of taxes and transfers at age j ∈
{0, . . . , jr − 1} in aggregate state s is given by

y(z, ε, j; s) = ej · exp(z(s) + ε), (9)

where ej is the deterministic age profile, ε is the transitory income shock,

drawn iid from distribution F̃ε, and z(s) is the persistent income component

which obeys

z′(s′) =




ρz + η′, where η′ ∼

iid
F̃η(s

′) for j < jr

z for j ≥ jr,
(10)

where ρ is the autocorrelation coefficient and η′ is the persistent income shock,

drawn from distribution F̃η(s
′) that depends on aggregate state s. We assume
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that exp(ε0) = exp(z0) = 1. In retirement, j ∈ {jr, . . . , J}, households earn

a fixed earnings related pension income contingent on the last income state

before retirement yj = b(zj).
18 Households have access to a risk-free savings

technology with rate of return r, and face a zero borrowing constraint. Thus,

the dynamic budget constraint is

a′(z, ε, j; s) = a(1 + r) + y(z, ε, j; s)− c ≥ 0. (11)

Preferences and Household Problem. Households born into the econ-

omy at history st, date t maximize recursive utility by solving a consumption-

savings problem every period. They discount the future at factor β > 0. The

state variables of the household’s problem are age j, asset holdings a, the per-

sistent income state z, the transitory shock ε, and the aggregate state of the

economy s. The recursive problem of households is

Vj(a, z, ε; s) = max
c,a′





(
(1− β̃)c1− 1

γ + β̃ (v(Vj+1(a′, z′, ε′; s′)))1− 1
γ

) 1

1− 1
γ γ 6= 1

exp
{

(1− β̃) ln c+ β̃ ln (v(Vj+1(a′, z′, ε′; s′)))
}

otherwise

s.t. (9), (10), and (11),

where β̃ = β
1+β

denotes the relative utility weight on the certainty equiva-

lent v(Vj+1) from next period’s continuation utility Vj+1(·), which is

v(Vj+1(a′, z′, ε′; s′)) =





(
Ej
[
Vj+1(a′, z′, ε′; s′)1−θ]) 1

1−θ θ 6= 1

exp (Ej [lnVj+1(a′, z′, ε′; s′)]) otherwise.

Parameter γ denotes the inter-temporal elasticity of substitution between

instantaneous utility from consumption and the certainty equivalent of the con-

tinuation utility v(Vj+1(·)). Given γ, parameter θ pins down the relative risk

attitudes of households as discussed in Section 3, respectively in Appendix A.

Conditional expectations are defined with respect to the realization of next

18With this specification we approximate the average indexed monthly earnings (AIME)
of the US pension system.
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period’s aggregate state of the economy s′, transitory income shock ε′, and

persistent income shock η′.

We solve for household policy and value functions using the method of

endogenous gridpoints. We aggregate by explicit aggregation iterating for-

ward on the cross-sectional distribution Φj(aj, zj, ε; s), which follows from the

initial distribution Φ0(a0, z0, ε0; s) and the transition function Gj(aj, zj, εj; s).

The latter is induced by the exogenous laws of motion of z, s, the exogenous

distribution of ε, and the endogenous transitions a′j(aj, zj, εj; s).

6.2 Calibration

Aggregate Shock Process. Based on our classification of time periods

as contractions and expansions for the US economy, we estimate a Markov

transition process on this data. We estimate π(E|E) = 0.769 and π(C|C) =

0.388, implying the stationary invariant distribution Πs = [0.274, 0.726]′.

Age Bins and Age Productivity. Each model period corresponds to one

life year. Consistent with our empirical specification, households start working

at age 25 (model age j = 0) and retire at age 60 (model age j = 35).

In the economic model, we abstract from heterogeneity along the dimen-

sions of education, labor market experience, or household size. We calibrate

the age productivity process ej by the fitted age polynomial fage(j) of the first

stage estimation of the earnings process for household post government earn-

ings. We take the weighted average of college and non-college age earnings

profiles that display the usual hump-shaped pattern, cf. Appendix D.3, and

normalize it such that average productivity is equal to one, 1
jr

∑jr−1
j=0 ej = 1.

Idiosyncratic Shock Processes. The most important element of the cal-

ibration is the specification of the distribution functions of the idosyncratic

shocks. The goal of our approach is to directly assess the economic conse-

quences of distributional aspects of these shocks that are summarized in the

central moments—and to thus extend the illustrative analysis from Section 3,

which does not need to make any (parametric) distributional assumptions, to
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a quantitative framework. For a given shock, our approach can be summa-

rized in two steps. First, we use a parametric continuous distribution function,

which we parameterize such that its first four central moments fit the ones es-

timated. Second, we discretize this distribution function. Thus, our approach

allows us to translate the estimated central moments directly into the model’s

shock distributions without having to simulate the income process.

As distribution function we choose the Flexible Generalized Lambda Dis-

tribution (FGLD) developed by Freimer et al. (1988), which is characterized

by its quantile function

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
, (12)

where λ is a vector of four parameters with location parameter λ1, scale pa-

rameter λ2, and tail index parameters λ3, λ4.19 For each shock x ∈ {ε, η(s)},
as in Lakhany and Mausser (2000) and Su (2007) we fit these parameters such

that the FGLD matches the estimated central moments {µ̂xi }4
i=1 of distribu-

tions Fε and Fη(s). Specifically, we choose λ3, λ4 jointly to fit the third and

fourth central moments by solving

min
λ3,λ4

4∑

i=3

(µi(λ3, λ4)− µ̂i)2 s.t. min{λ3, λ4} > −
1

4
,

where µ̂i is the point estimate of the ith moment, and µi(·) denotes the central

moment of the FGLD. Next, we determine λ2 to match the variance and λ1 to

match the mean, both in closed form. We then discretize by spanning equidis-

tant grids for the respective random variable x ∈ {ε, η(s)} and by assigning to

each grid point probabilities from the integrated probability density function

of the distribution function.

We consider two alternative parameterizations of the FGLD with the fol-

lowing restrictions on central moments (and parameters) to which we refer

19The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .
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as distribution scenarios.20 Scenario NORM features symmetric shock distri-

butions (µ̂3 = 0) with the estimated variance and a kurtosis of µ̂4
µ̂22

= 3.21 The

parameter restrictions on the FGLD are λ3 = λ4. Scenario LKSW features lep-

tokurtic and left-skewed shock distributions with the estimated second, third,

and fourth moments, and no restrictions apply to the FGLD parameters. Fig-

ure 3 shows the log distribution functions for the distributions of the persistent

shock η(s). Panel (a) shows the distribution in scenario NORM in contractions

and expansions, illustrating the counter-cyclical variance. Panel (b)) shows the

distribution in scenario LKSW. Relative to scenario NORM, the distribution

in scenario LKSW has more mass in the center and is more spread out in

the tails (excess kurtosis), and is left-skewed (and more so in contractions).

Appendix D.1 reports the estimated, fitted, and discretized moments, as well

as the parameter vectors λ for all shocks under the two scenarios NORM, and

LKSW. In both distribution scenarios we scale down the transitory shocks

because part of the estimated variance is likely due to measurement error.22

Appendix D.3 shows central moments 2-4 in logs and levels that result from

our parametrization.

20We also impose a minimum post-government household income that remains unchanged
across scenarios, i.e., when moving from the scenario with normally distributed shocks to
the scenario with, say, leptokurtic shocks, the lowest level of income that households can
reach is by construction unchanged. This minimum income is expressed relative to average
income. We then adjust incomes such that average income (before multiplying with the age
profile) remains 1.

21The FGLD does not nest the normal distribution. This is also visible in panel a of
Figure 3, which plots the discretized FGLD distribution in scenario NORM: the log density
does not display the quadratic shape of the Normal distribution—while it does feature zero
skewness and a kurtosis of 3. In our computations we therefore also consider a scenario
in which we draw shocks from the Normal distribution and discretize it using standard
Gaussian Quadrature methods. As documented in Appendix E.1, results are numerically
almost identical to those obtained for FGLD distribution NORM, which is why we use the
latter as benchmark.

22Following Huggett and Kaplan (2016) we assume that one third of the estimated variance
of the transitory shock is measurement error and reduce the targeted variance accordingly.
We assume that this measurement error is symmetric and accordingly adjust the third
and fourth central moments such that the implied coefficients of skewness and kurtosis are
unchanged.
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Figure 3: Discretized Log Distribution Functions: Persistent Shock

(a) NORM (b) LKSW

Notes: Discretized log distribution functions for the persistent shock η. NORM: FGLD with

moments of the normal distribution, LKSW: FGLD with excess kurtosis and left-skewness

(in logs). Markers denote the grid points used in the discretized distribution. Log density

is the base 10 logarithm of the PDF.

Pension System. Social security benefits follow a fixed replacement sched-

ule that approximates the current US bend point formula. We approximate

average indexed monthly earnings (AIME) by the realization of the persis-

tent income shock before entering into retirement zjr−1. We then apply the

bend point formula contained in Appendix D.2 and denote the according

model equivalent to the primary insurance amount (PIA) by p(zjr−1). To

achieve budget clearing of the pension system, pension payments are further

scaled by the aggregate indexation factor % so that individual pension in-

come is b(zjr−1) = % · p(zjr−1). As to contributions to the pension system,

we compute the average contribution rate from the data giving τ p = 11.7%

(which is close to the current legislation featuring a marginal contribution rate

of τ p = 12.4%). The base for pension contributions in our model is average

gross earnings. Since earnings processes in the model are based on net wages—

net of all taxes and transfers—and since we normalize average net wages to

one, average gross wages are 1
1−τp−τ , where τ is some average labor income tax

rate (including transfers). We compute τ from the data giving τ = 16.88%.

Since average labor productivity, the means of the shocks zj, εj as well

as the total population in age group j are all normalized to one, efficiency
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weighted aggregate labor in the economy is equal to jr − 1. The number of

pensioners is J − jr + 1. The pension budget is therefore given by

τ p · 1

1− τ − τ p · (jr − 1) = % ·
∫
p(zjr−1)dΦ(zjr−1) · (J − jr + 1) .

We calibrate % in each distribution scenario so that the pension budget

clears. Since contributions obey a linear tax schedule and by our normal-

ization of income, aggregate contributions are constant across all scenarios.

Recalibrating % therefore implies that also average pension income is the same

across all scenarios. Table D.5 in Appendix D.2 provides the accordingly cal-

ibrated values of %.

Initial Assets and Interest Rate. For simplicity, we assume that all

households are born with the same initial assets a0 = ā0. We compute those

from the average asset to net earnings data at age 25, which we calculate

from PSID data as 0.89. We set the annual interest rate of the risk-free asset

to r = 4.2%, based on Siegel (2002).

Table 2: Calibrated Parameters

Working period 25 (j = 0) to 60 (j = jr − 1)
Maximum age 80
IES γ = 1
RA θ ∈ {1, 2, 3, 4}
Discount factor (2nd stage) β ∈ {0.971, 0.970, 0.967, 0.965}
Interest rate r = 0.042
Pension contribution rate τ p[%] = 11.7%
Pension benefit level See Table D.5
Average tax rate τ [%] = 16.8%
Aggregate shocks π(s′ = c | s = c) = 0.39, π(s′ = e | s = e) = 0.77
Initial ass. / inc. ā0 = 0.89

Notes: Calibration parameters. IES: inter-temporal elasticity of substitution, RA: coeffi-

cient of risk aversion. The discount factor β is calibrated endogenously to match asset to

income data from the PSID. The pension benefit level parameter % is calibrated such that

the pension budget clears.
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Preferences. As we show in Section 3, risk attitudes play a crucial role for

the welfare effects of higher-order income risk and for the precautionary sav-

ings motive. For each model variant we therefore consider four alternative

parameterizations and vary θ ∈ {1, 2, 3, 4}. Throughout, we consider risk-

sensitive preferences (Tallarini 2000) and accordingly set the inter-temporal

elasticity of substitution to γ = 1.23 For each θ ∈ {1, 2, 3, 4}, we determine

endogenously the discount factor β to match life-cycle asset profiles scaled by

net earnings, which we compute from PSID data. Since our model is not de-

signed to match saving patterns in retirement (there is neither survival risk nor

a bequest motive), we match assets for ages 25-60, the working period in our

model. This calibration is done for distribution scenario LKSW, and we then

hold the calibrated discount factor constant when moving to scenario NORM,

for each calibration of θ.

Calibrated discount factors range from 0.971 for θ = 1 to 0.965 for θ = 4,

see Table 2, which summarizes the calibration of the model. The reason for

the decline of the calibrated discount factor in θ is that increasing θ leads to

higher precautionary savings which is offset in the calibration by lowering β

so that the life-cycle savings motive is less potent.

7 Quantitative Role of Higher-Order Risk

7.1 Welfare Implications of Higher-Order Income Risk

In order to assess the welfare implications of higher-order income risk, we

ask which world households would prefer to be born into. Taking this ex-

ante perspective, we accordingly define the Utilitarian social welfare function

as the expected life-time utility function of households born with initial as-

sets a0 = ā0, idiosyncratic persistent income state z0 = 0, and transitory

23Cooper and Zhu (2016) estimate a portfolio choice model where agents have Epstein-
Zin-Weil preferences, and face the canonical income process with log Normal shocks. They
estimate a risk aversion of 4.4 and an IES of 0.6. We choose an IES of 1 as a natural
benchmark. This is also very convenient when we decompose the welfare effects as described
in Appendix A.7.

31



shock ε = 0. Corresponding with our notion of an ex-ante perspective we

aggregate expected life-time utilities of newborns in the stationary invariant

distribution of the economy. Since the transition probabilities over aggregate

states are encoded in the value functions and since aggregate fluctuations in

our partial equilibrium model do not affect relative prices, evaluating welfare

in the stationary invariant distribution of the economy is equivalent to aggre-

gating newborns’ value functions with the stationary invariant distribution of

the Markov chain process, Πs. Accordingly, welfare is given by

W =
∑

s

ΠsV0(a0 = ā0, z0 = 0, ε = 0; s).

We then calculate the consumption equivalent variation (CEV) that house-

holds need to receive in the world without higher-order risk (distribution sce-

nario NORM) in order to be indifferent to a world with higher-order risk as

parameterized by the distribution scenario LKSW. Given the homotheticity of

the utility function, the CEV is gc = WLKSW/WNORM − 1.

We distinguish between three different channels through which idiosyn-

cratic risk translates into utility consequences evaluated from this ex-ante

perspective, and express the CEV as the sum of three components: gc =

gmeanc + glcdc + gcsdc (cf. Appendix A.7 for explicit expressions). While we hold

mean income constant, consumption is endogenous. When facing different (dis-

tribution) scenarios, households make different savings decisions, and thus re-

alize different mean consumption, i.e., consumption averaged cross-sectionally

and over age. We call the welfare consequence of this change of mean con-

sumption the mean effect, gmeanc , which is proportional to changes in mean

consumption. We in turn refer to utility consequences of changes in the dis-

tribution around mean consumption as the distribution effect, gdistrc , which we

decompose into two components: the utility consequences of, first, the change

of the distribution of mean consumption over the life-cycle, the life-cycle distri-

bution effect, glcdc , and, second, the change of the cross-sectional distribution of

consumption around the mean life-cycle profile, the cross-sectional distribution

effect, gcsdc .
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Table 3 summarizes the welfare implications of higher-order income risk

by showing the CEV and its decomposition. Consistent with our analytical

findings in Proposition 1 (see Appendix A.2) higher-order risk leads to welfare

gains when risk attitudes are weak. With stronger risk attitudes, however,

welfare losses show up, because the increasing variance and the high kurtosis

dominate the welfare effects.

Table 3: Welfare Implications of Higher-Order Income Risk: CEV in %

Risk Aversion / CEV gc gmeanc glcdc gcsdc
θ = 1 0.371 -0.154 0.506 0.019
θ = 2 -0.386 -0.161 -0.256 0.031
θ = 3 -4.488 0.318 -4.751 -0.055
θ = 4 -12.474 1.211 -13.392 -0.294

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order in-
come risk, expressed as a Consumption Equivalent Variation (CEV) in scenario NORM
that makes households indifferent to the higher-order income risk scenario LKSW. gc: total
CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the dis-
tribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc .

The main force for the welfare results is the redistribution of consump-

tion over the life-cycle reflected in glcdc . This is a consequence of increased

precautionary savings as reflected in Panel (a) of Figure 4, which displays

mean log consumption over the life-cycle.24 Consumption in the higher-order

income risk scenario LKSW is lower when young and higher when old com-

pared to scenario NORM. In welfare terms lower consumption when young

dominates higher consumption when old due to discounting. The mean ef-

fect gmeanc instead is mostly positive because the increased consumption when

old dominates (except for θ = 1 and θ = 2). In sum, total welfare losses for

scenario LKSW range from about 0.4% (i.e., small gains) for θ = 1 to −12.5%

for strong risk attitudes with θ = 4.

24Here we show the profile for a high risk aversion parameter of θ = 4, because in this
calibration the effects are most evident visually. Qualitatively, effects are the same in the
other risk attitude calibrations. Note that consumption is monotonically increasing over
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Figure 4: Central Moments of Log Consumption by Age (θ = 4)

(a) Mean of Log (b) Variance of Log

(c) Third Central Moment of Log (d) Fourth Central Moment of Log

Notes: Moments of cross-sectional distribution of log consumption over the life-cycle.
NORM: FGLD with moments of the normal distribution, LKSW: FGLD with excess kurtosis
and left-skewness (in logs).

Panels (b) to (d) of Figure 4 show the second to fourth central moments

of the consumption distribution over the life-cycle, which are relevant for the

cross-sectional distribution effect gcsdc . To interpret it observe that the variance

of log consumption is lower in scenario LKSW than in scenario NORM for

most ages, whereas the third central moment is initially negative and the

kurtosis of the log consumption distribution is higher at all ages.25 The lower

the life-cycle and thus does not display the typical hump-shaped profile, because we do not
model life-cycle consumption behavior in retirement.

25The Gini coefficient for assets for a risk aversion of 4 is at 0.35 in scenario NORM, and
at 0.34 in scenario LKSW. Thus, introducing higher-order income risk does not increase the
Gini coefficient in a quantitative model such as ours. Also, note that the Gini coefficient
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variance contributes positively to gcsdc , which dominates for low risk aversion,

whereas the negative skewness and the excess kurtosis contribute negatively,

and dominate for strong risk attitudes.

7.2 Welfare Costs of Cyclical Idiosyncratic Risk

Next, we quantify the utility consequences of cyclical idiosyncratic risk. To

this end, for each of the two distribution scenarios NORM and LKSW we

evaluate the welfare implications for households of facing the actual cyclical

income process relative to a counterfactual income process in which we shut

down the cyclical variation of the distribution. By holding mean wages and

interest rates constant over the cycle, the welfare effects of cyclical risk we

report constitute a lower bound for each scenario.26

As before, W i denotes the social welfare function in the cyclical risk sce-

nario, while W i,ncr denotes the social welfare function in the no cyclical risk

scenario. We then compute the CEV necessary in the scenario with no cyclical

risk to be indifferent to the scenario with cyclical risk, gi,crc = W i/W i,ncr − 1,

and decompose the total CEV from cyclical risk into its components, i.e.,

gi,crc = gi,cr,meanc + gi,cr,lcdc + gi,cr,csdc , for i ∈ {NORM,LKSW}.
When computing welfare in the non-cyclical scenario W i,ncr we assume

that households always draw from the “expansion-distribution” of the scenario

rather than taking a weighted average of shock distributions for expansions and

in our calibrated model is substantially lower than in the data and also lower than what
is typically found in quantitative work; e.g., Krueger and Ludwig (2016) compute a Gini
coefficient of assets of 0.55 in an overlapping generations model calibrated to the US econ-
omy. The key reason for the relatively modest asset inequality lies in our focus on ex-post
heterogeneity, i.e., the only source of heterogeneity is income risk faced throughout the life
cycle.

26Note that the direct effect of business cycles is typically found to be small. For example,
Storesletten et al. (2001) find the direct effect to be an order of magnitude smaller than
the role of cyclical variation in idiosyncratic risk. However, there can be indirect utility
“interactions” between aggregate and idiosyncratic risk, which may be large (Harenberg
and Ludwig 2019), and which we abstract from here to focus on the role of the idiosyncratic
shock distribution.
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contractions.27 There are two reasons for this. First and more importantly,

it is conceptually not clear what characterizes an “average” distribution, once

other moments than the variance are taken into account. Second, we avoid any

potential inaccuracies that would arise from our discretization methods. To

the extent that some average distribution represents a better non-cyclical coun-

terfactual scenario, the pure effect of cyclical idiosyncratic risk is overstated in

our analysis.28 However, we are mainly interested in the difference of welfare

costs of cyclical income risk across scenarios, i.e., the “difference in difference”

comparison between gLKSW,crc and gNORM,cr
c , i.e., ∆gcrc = gLKSW,crc − gNORM,cr

c .

Thus, our approach to “normalize” the economy without cyclical idiosyncratic

risk is of second order importance as it is consistent across scenarios.

Table 4 reports the results on the welfare costs of cyclical idiosyncratic risk

in scenarios NORM and LKSW. First, note that consistent with our theoret-

ical analysis of Section 3 in each scenario the welfare costs of business cycles

increase monotonically in θ. Second, as for the welfare costs of higher-order

risk, the main contributor to the welfare consequences is the redistribution of

consumption over the life-cycle as quantified by glcdc . Third, mean effects are

positive. Recall that a negative glcdc is a consequence of the counter-clockwise

tilting of the consumption profile because of increased precautionary savings.

Higher savings increase consumption in the middle of the life-cycle, which

pushes up mean consumption. As previously, on average over the life-cycle

this second effect dominates.

Consistent with the afore documented result (and with our theoretical anal-

ysis of Section 3) that with logarithmic utility the total welfare effect from

higher-order income risk is positive for scenario LKSW, we now correspond-

ingly find that welfare losses from cyclical idiosyncratic risk are about 0.28%p

27When using log-Normal distributions of shocks, a typical approach in the literature is
to consider an average distribution, which features the average of expansion and contraction
variances, see for example Storesletten et al. (2001).

28Indeed, Storesletten et al. (2001) find welfare costs of cyclical risk of about 1.3%. They
consider CRRA preferences with θ = 2. In one of our sensitivity checks below, we also
consider CRRA preferences with θ = 2. In this case we obtain welfare costs of about 2.6%.
Besides other differences between our model and theirs, one reason for the higher welfare
costs in our analysis lies in the different approach to characterizing the non-cyclical scenario.
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lower in scenario LKSW (last column in first panel of Table 4). Similarly, with

moderate risk attitudes (risk aversion of 2), the welfare implications of cycli-

cal income risk in scenario LKSW are only mildly higher than those obtained

in scenario NORM. With strong risk attitudes (θ = 4), the welfare losses

compared to scenario NORM are significantly higher: They are about 6.4%p

higher in scenario LKSW.

Table 4: Welfare Effects of Cyclical Idiosyncratic Risk

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.720 0.499 -2.175 -0.044 0
LKSW -1.443 0.398 -1.806 -0.035 0.277

Risk Aversion, θ = 2
NORM -3.263 0.898 -4.038 -0.123 0
LKSW -3.516 0.823 -4.228 -0.111 -0.253

Risk Aversion, θ = 3
NORM -4.607 1.229 -5.638 -0.198 0
LKSW -7.177 1.379 -8.313 -0.243 -2.570

Risk Aversion, θ = 4
NORM -5.758 1.515 -7.009 -0.264 0
LKSW -12.171 1.944 -13.686 -0.429 -6.413

Notes: Consumption Equivalent Variation in the non-cyclical scenario that makes house-
holds indifferent to the cyclical scenario. gc = gmeanc + glcdc + gcsdc , where gmeanc : CEV
from change of mean consumption, glcdc : CEV from changes in the distribution of con-
sumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution.
∆gc = gLKSWc − gNORMc .

In Appendix E.2 we investigate the sensitivity of our results with respect

to selected modeling and calibration assumptions. Specifically, we consider an

expected utility formulation with CRRA preferences where we restrict θ = 1
γ
,

we analyze the role of borrowing constraints in the model, and we investigate

how results are affected by our choice of the interest rate. The results shown

in the appendix underscore the robustness of our findings also with respect to

the dominant role played by the life-cycle distribution effect glcdc .

Furthermore, in Appendix E.3 we analyze an alternative distribution sce-

nario, which features shocks that have excess kurtosis, but are symmetric (in
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logs). In the calibration with θ = 4, welfare costs of cyclical risk are about 4%

higher in this distribution scenario than in scenario NORM (see table E.6).

Combined with the lower part of table 4 we thus find that of the differential

welfare losses from higher-order risk approximately 62%(≈ 3.98/6.41 · 100%)

are due to the excess kurtosis and the remaining 38% are due to the left skew-

ness of shocks.

We can thus conclude that the welfare effects of cyclical risk are strongly

underestimated in conventional approaches based on Gaussian distributions of

innovations if risk attitudes are strong (levels of θ of 3 or 4) and that both

features of higher order income risk—excess kurtosis and left skewness—are

quantitatively important for this finding, whereby about 60% of the effect can

be attributed to the excess kurtosis.

7.3 Insurance Against Idiosyncratic Risk

Finally, we adopt concepts developed in the literature on consumption insur-

ance (Blundell et al. 2008; Kaplan and Violante 2010) to ask how households

are self-insured against income shocks xj(s) ∈ {εj, ηj(s)} and how this insur-

ance varies across scenarios. In the model, the transitory and persistent shocks

are directly observed and thus we adopt the measure of Kaplan and Violante

(2010) to our setting with cyclical risk. Conditional on today’s aggregate

state s, the insurance coefficient φxj (s) is given as the share of the variance of

next period’s shock xj+1(s′) that does not translate into consumption growth,

and thus the pass-through coefficient 1 − φxj (s) is the coefficient of a linear

regression of consumption growth on shock x, which captures how strongly

the shock translates into consumption:

1− φxj (s) =
cov(∆ ln (cj+1(s′ | s)) , xj+1(s′))

var(xj+1(s′))
, (13)

for ∆ ln (cj(s
′ | s)) = ln (cj+1(s′ | s))− ln (cj(s)).
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Figure 5: Insurance Coefficients: Strong Risk Attitudes, θ = 4

(a) Transitory Shock (b) Persistent Shock

Notes: Figures show the degree of consumption insurance against transitory and persistent
shocks separately by age.

Figure 5 reports the insurance coefficients φxj for all ages j ∈ {0, . . . , J}, as

a weighted average of the coefficients in contractions and expansions29 for the

transitory shock ε in Panel (a) and for the persistent shock η(s) in Panel (b).

Results are quantitatively similar for different values of risk attitudes, so we

discuss only the numbers for θ = 4. For scenario LKSW, consumption in-

surance against both transitory and persistent shocks is improved relative to

scenario NORM as measured by the φ-coefficients. This is a direct consequence

of increased precautionary savings, which lead to shocks translating less into

consumption.

Do the higher insurance coefficients in scenario LKSW really represent

better insurance, though? Arguably, better insurance would mean that neg-

ative shocks translate less into consumption. This is not the case as can be

illustrated by one simple decomposition of the pass-through of shocks to con-

sumption changes in equation (13). Consider the aggregate (integrating over

29We weigh with the stationary invariant distribution Πs.
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age and averaging over states s) pass-through coefficient for shock x ∈ η, ε:

1− φx =
E [∆ ln(c(·))x]− E [∆ ln(c(·))]E [x]

var(x)
(14)

=
E [∆ ln(c(·))x|x > 0]

var(x)
+
E [∆ ln(c(·))x|x < 0]

var(x)
− E [∆ ln(c(·))]E [x]

var(x)
.

The first two components of the sum in equation (14) give the contribu-

tion to the overall pass-through coefficient of comovements of consumption

with positive and negative shocks, respectively. Table 5 shows the aggregate

pass-through coefficient of the economy along with the contributions of its

components. As already learned from Figure 5, the aggregate pass-through of

both transitory and persistent shocks is smaller in scenario LKSW (insurance

coefficient is larger). Now consider the contribution of positive and negative

shocks to the aggregate pass-through coefficient. In scenario NORM, neg-

ative transitory shocks do not translate into negative consumption changes:

comovements with negative realizations of ε contribute −3.4% to the pass-

through coefficient. In scenario LKSW, the (negative) consumption reaction

to negative shocks is important: 30.2% of the pass-through coefficient are

accounted for by negative transitory shocks leading to negative consumption

adjustments. At the same time, consumption reacts less strongly to positive

changes. Thus, the fact that the aggregate pass-through is smaller (the in-

surance coefficient is larger) is indeed explained by increased precautionary

savings. However, built-up savings do not suffice to smooth out the negative

shocks in scenario LKSW as well as they do in scenario NORM.

For persistent shocks, the same mechanics are at work. In scenario NORM,

about 40% of the pass-through coefficient is generated by consumption re-

ductions with negative shocks, while about 59% come from consumption in-

creases with positive shocks. In scenario LKSW, negative shocks pass-through

more (51% of overall), and positive shocks pass-through less (46%). So for both

transitory and persistent shocks, the reduction of the pass-through (increase

of insurance coefficient) when moving from scenario NORM to scenario LKSW
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Table 5: Aggregate Pass-Through and its Decomposition, θ = 4

Transitory 1− φε E[∆c · ε, ε < 0] E[∆c · ε, ε > 0] −E[∆c] · E[ε]
NORM 0.055 -0.034 0.898 0.136
LKSW 0.047 0.302 0.525 0.173
Persistent 1− φη E[∆c · η, η < 0] E[∆c · η, η > 0] −E[∆c] · E[η]
NORM 0.395 0.395 0.586 0.019
LKSW 0.353 0.514 0.458 0.028

Notes: Table shows aggregate consumption pass-through coefficient (1-insurance coeffi-
cient), and its decomposition into components according to equation 14. Values are ex-
pressed as shares of total pass-through. ∆c = ∆ ln(c(·)).

is driven by an increased propensity to save, while at the same time negative

shocks actually translate more into consumption.

We can thus conclude that in an economy with higher-order income risk

aggregate insurance (or pass-through) coefficients are imprecise measures of

insurance against risk, if one plausibly has in mind that better insurance means

that negative shocks translate less into consumption.

8 Conclusion

We first develop a novel Generalized Method of Moments estimator of higher-

order income risk, that starts out with the canonical income process, which

captures the salient features of labor income risk as a combination of persistent

and transitory income shocks. We show how the second to fourth central mo-

ments of the distributions of shocks can be estimated. We apply our method

to household-level earnings data from the Panel Study of Income Dynamics.

Our estimates imply that the distribution of persistent income shocks exhibits

strong cyclicality: the variance is countercyclical, while the third central mo-

ment is procyclical. All shock components exhibit strong excess kurtosis. We

then estimate the process for post-government household income. The esti-

mates imply that both transitory and persistent income shocks are dampened

and cyclicality is reduced by the existing tax and transfer system.
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In the second part of the paper we show that the identified deviation from

log-Normal shocks, i.e., higher-order risk, has important economic implica-

tions. We set up a standard quantitative life-cycle model in which households

face an exogenous income process which features transitory and persistent

shocks. Households can self-insure by means of saving in a risk-free asset. In

the calibration of the income process, we use a parametric distribution func-

tion (the Flexible Generalized Lambda distribution) to implement shocks with

higher-order risk, which we fit to the estimates of the central moments. We

then discretize the obtained shock distributions.

We find that, first, higher-order risk has relevant implications for welfare.

Second, the presence of higher-order risk matters for the welfare costs of busi-

ness cycles. Third, higher-order income risk affects the degree of consumption

self-insurance, because households increase their precautionary savings, and

thus the pass-through of income shocks to consumption is reduced. However,

a decomposition of the pass-through coefficient reveals that this does not im-

ply better insurance in the presence of higher-order risk: increased savings do

not suffice to insure against increased downside risk, and therefore the pass-

through of negative shocks is actually stronger than under Normal shocks with

the same dispersion. We therefore caution against using only the insurance

coefficient for the analysis of the degree of partial insurance against income

risk and view it as an interesting avenue for future research to dig deeper into

this finding by combining our analysis with consumption data.
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Appendix

”Higher-Order Income Risk Over the Business Cycle”

(Christopher Busch and Alexander Ludwig)

A Analytical Appendix

A.1 Derivation of Equation (1)

Take a fourth order Taylor series expansion of the age 1 subperiod utility function around c1 =

µc1 to get

U ≈ c1−θ
0

1− θ +
1

1− θ

(
µc

1−θ
1 + E

[
(1− θ)µc−θ1 (c1 − µc1)− (1− θ)θ

2
µc

−(1+θ)

1 (c1 − µc1)2

+
(1− θ)θ(1 + θ)

6
µc

−(2+θ)

1 (c1 − µc1)3 − (1− θ)θ(1 + θ)(2 + θ)

24
µc

−(3+θ)

1 (c1 − µc1)4

])

Under a binding budget constraint and the additional assumption that E[exp(ε)] = 1 we

obtain µc1 = 1. Also impose that θ = 1
γ
. Using these conditions in the above we obtain (1).

A.2 Logs vs. Levels

While the transformation from logs to levels is natural, it has non-trivial implications for the

welfare effects of higher-order risk: the higher-order moments of the shocks in levels, exp(ε),

rather than of the shocks in logs, ε, are relevant for utility consequences. Consider a mean

preserving (thus E[exp(ε)] = 1) change of idiosyncratic risk. When introducing left-skewness

in logs, probability mass is shifted to the left, which reduces the variance of the shocks in

levels. Without adjustment, the mean of the distribution in levels would be lower, so to

preserve the mean the distribution needs to be shifted up, which increases the mean in logs.

Similarly, a higher variance or higher kurtosis of the distribution in logs increases the variance

in levels. Without adjustment, the mean of the distribution in levels would be higher, so

to preserve the mean the distribution needs to be shifted down, which reduces the mean it

logs. In the special case of log utility (θ = 1
γ

= 1), what matters for expected lifetime utility

is the mean of the distribution in logs: U = ln(c1) + E[ln(c2)]. This gives the following

Proposition 1. Suppose that the utility function is logarithmic (θ = 1) and that there is no

savings technology (a1 = 0). Then a mean-preserving reduction of skewness (‘more negative

1



skewness’) leads to utility gains, whereas a mean-preserving increase of variance or kurtosis

lead to utility losses in expectation.

Proof. Let µε1 = EΨ[ε] =
∫
εdΨ, µεi =

∫
(ε− µε1)i dΨ for i > 1, and let EΨ[exp(ε)] =∫

exp(ε)dΨ = 1. Denote by Ψ̃δi(ε) a mean preserving (constant µε1) distribution function that

is obtained from Ψ(ε) by changing central moment µεi holding all other moments µε¬i for i > 1

constant. Also, define the random variable ε̃δi = ε+∆δi , which is obtained from ε by shifting

all realizations by the constant ∆δi . Let the normalization EΨ̃δi [exp(ε̃δi)] = EΨ̃δi [exp(ε +

∆δi)] =
∫

exp(ε + ∆δi)dΨ̃δi = exp(∆δi)
∫

exp(ε)dΨ̃i = 1 define the shift parameter ∆δi =

− ln
(∫

exp(ε)dΨ̃i
)

. Finally, observe that EΨ̃δi [ε+∆δi ] = EΨ̃[ε] +∆δi = EΨ[ε]+∆δi since µε1

is held constant. With logarithmic utility and binding budget constraint, the expected utility

difference across distributions Ψ and Ψ̃δi is thus ∆U = (U | Ψ) − (U | Ψ̃) = ∆δi and thus

exclusively driven by the shift parameter. We then get the following:

• Shifting probability mass from the center to the tails, either by increasing the vari-

ance (i = 2) or kurtosis (i = 4) holding constant all µε¬i for i > 1 increases
∫

exp(ε)dΨ̃i

above one which follows from Jensen’s inequality for convex functions. Thus ∆δi < 0.

• Shifting probability mass from the right tail to the left tail decreasing the skewness (i =

3) (i.e., making the distribution more left-skewed), holding constant all µε¬i for i > 1

decreases
∫

exp(ε)dΨ̃i below one which follows from Jensen’s inequality for convex

functions. Thus ∆δi > 0.

Proposition 1 thus establishes that higher-order income risk in terms of the logs of the in-

come process, specifically a reduction of skewness (increase of left-skewness), may in fact lead

to welfare gains rather than losses. While this may appear counter-intuitive at first glance,

the reason is the transformation of the shocks from logs, which are typically modelled and

estimated, to levels, which eventually matters for welfare.1 In Supplementary Appendix S.B

we provide a numerical illustration by considering a discrete three-point distribution. We

1Due to this re-transformation our findings are related to, but not the same, as first-order stochastic
dominance, see Rothschild and Stiglitz (1970, 1971). Stochastic dominance refers to random variables in
levels, in our case exp(ε). Obviously, increasing the variance (or kurtosis) of exp(ε), while holding the
mean constant at E[exp(ε)] = 1, has direct negative utility consequences. In this case utility is U =
ln(y0) + E[ln(exp(ε))], which for the maintained normalization E[exp(ε)] = 1 we could approximate as

U ≈ ln(y0)− 1

2
µ
exp(ε)
2 +

1

3
µ
exp(ε)
3 − 1

4
µ
exp(ε)
4

from which the utility effects of increasing the variance or the kurtosis or decreasing the skewness are
obviously all negative.

2



show how changing moment µεi by holding other moments constant can be conceptualized

and how this affects the conclusions on the welfare implications of higher-order risk.

A.3 Derivation of Equation (2)

Take a fourth order Taylor series expansion of the RHS of the first-order condition around E[exp(ε)] =

1 to get

RHS ≈ E
[
(1 + a1)−θ − θ (1 + a1)−(1+θ) (exp(ε)− 1) +

θ(1 + θ)

2
(exp(ε)− 1)2

−θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) (exp(ε)− 1)3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) (exp(ε)− 1)4

]

= (1 + a1)−θ +
θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2

− θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 .

A.4 Precautionary Savings

Rewrite the first-order condition, equation (2), as an implicit function

e
(
a1, µ

exp(ε)
i

)
= (y0 − a1)−θ − (1 + a1)−θ − θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2

+
θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

− θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 = 0

and from the total differential of e(·) note that

da1

dµ
exp(ε)
i

= −
∂e(·)

∂µ
exp(ε)
i

∂e(·)
∂a1

Note that since µ
exp(ε)
2 > 0, µ

exp(ε)
3 < 0, µ

exp(ε)
4 > 0 we have ∂e(·)

∂a1
> 0, which reflects that

the marginal utility of savings is decreasing in a1. Also note that ∂e(·)
∂µ

exp(ε)
i

< 0 for i = 2, 4

and ∂e(·)
∂µ

exp(ε)
3

> 0. Thus, da1

dµ
exp(ε)
i

> 0 for i = 2, 4 and da1

dµ
exp(ε)
3

< 0.
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A.5 Extension of Two-Period Model to Recursive Preferences

Our results from the two-period analysis readily extend to a recursive preference specification.

Of course, in the two-period model the notion of recursive preferences is not strictly speaking

correct. We use this terminology here as we adopt Epstein-Zin-Weil preferences a la Epstein

and Zin (1989, 1991), and Weil (1989) in the main analysis based on the quantitative life-cycle

model. In the two-period context, with the alternative utility specification we can disentangle

risk attitudes as parameterized by θ from the inter-temporal elasticity of substitution as

parameterized by γ:2

U =





1
1− 1

γ

(
c

1− 1
γ

0 + v (c1, θ,Ψ)1− 1
γ

)
for γ 6= 1

ln (c0) + ln (v (c1, θ,Ψ)) for γ = 1.

(1)

Thus, γ is the (inter-temporal) elasticity of substitution between c0 and v(·), where v(·)
represents the certainty equivalent from consumption in the second period, which is given

by

v(c1, θ,Ψ) =





(∫
c1(ε)1−θdΨ(ε)

) 1
1−θ =

(
E
[
c1−θ

1

]) 1
1−θ for θ 6= 1

exp
(∫

ln(c1(ε))dΨ(ε)
)

= exp (E [ln(c1)]) for θ = 1.
(2)

The specification of preferences gives standard CRRA preferences considered in the main

text if the measure of the IES γ and the measure of risk aversion θ are reciprocals: θ = 1
γ
.

Hand-to-Mouth Consumers. By the analogous steps to the CRRA case we can approx-

imate the certainty equivalent (2). To this purpose write (2) as

v(c1, θ,Ψ) =

(∫
g̃(c1(ε))dΨ(ε)

) 1
1−θ

, where g̃(c1(ε)) = c1(ε)1−θ

2Notice that our representation of Epstein-Zin-Weil preferences, which goes back to Selden (1978, 1979),
is a monotone transformation of the standard Epstein-Zin-Weil aggregator

V =





(
c
1− 1

γ

0 + v(c1, θ,Ψ)1−
1
γ

) 1

1− 1
γ

for γ 6= 1

c0 · v(c1, θ,Ψ) for γ = 1,

where U = 1
1− 1

γ

V 1− 1
γ if γ 6= 1 and U = ln(V ) if γ = 1.

4



and take a fourth order Taylor series expansion of g̃(c1(ε)) around µc1, noticing that c1 =

exp(ε) and E[exp(ε)] = 1 to get

E[g̃(c1(ε))] ≈

1 + (1− θ)
(
−1

2
θµ

exp(ε)
2 +

1

6
θ(1 + θ)µ

exp(ε)
3 − 1

24
θ(1 + θ)(2 + θ)µ

exp(ε)
4

)

and thus the certainty equivalent is approximated as

v(c1, θ,Ψ) =

(∫
c1(ε)1−θdΨ(ε)

) 1
1−θ

(3)

≈
(

1 + (1− θ)
(
−θ

2
µc2 +

θ(1 + θ)

6
µc3 −

θ(1 + θ)(2 + θ)

24
µc4

)) 1
1−θ

.

Since v(g(c1, θ,Ψ)), for g(c1, θ,Ψ) =
∫
c1(ε)1−θdΨ(ε) is decreasing in g(·) for θ > 1 and

increasing in g(·) for θ < 1 we observe that an increase of risk of order 2 − 4 reduces the

certainty equivalent and thus the results for the CRRA case readily extend.

Precautionary Savings. In the general case where γ 6= 1
θ
, we can use the resource con-

straint and write utility as

U =
1

1− 1
γ


(y0 − a1)1− 1

γ +
(
E
[
(exp(ε) + a1)1−θ

]) 1− 1
γ

1−θ


 .

The first-order condition is now given by

(y0 − a1)−
1
γ = v(c1, θ,Ψ)θ−

1
γE
[
(exp(ε) + a1)−θ

]
. (4)

In the sequel, we follow Kimball and Weil (2009) and assume that the marginal utility of

saving, the RHS of (4), is a decreasing function of a1 (just as earlier established for CRRA

utility), which establishes uniqueness of the solution. With this assumption we obtain the

next proposition, as in Kimball and Weil (2009) (cf. Propositions 5 and 6):

Proposition 2. For θ 6= 1
γ
an increase of (higher-order) risk leads to an increase of savings

if γ ≤ 1 or if 1 < γ ≤ 1
θ
.

Proof. Our proof of the proposition is adopted from Krueger and Ludwig (2019). Rewrite

5



the RHS of the first-order condition in (4) as

RHS = v(c1, θ,Ψ)θ−
1
γ f(c1, θ,Ψ) (5)

= v(c1, θ,Ψ)1− 1
γ

E
[
(exp(ε) + a1)−θ

]

E
[
(exp(ε) + a1)1−θ

]

= v(c1, θ,Ψ)1− 1
γ h(c1, θ,Ψ). (6)

where f(c1, θ,Ψ) = E
[
(exp(ε) + a1)−θ

]
and h(c1, θ,Ψ) = f(c1,θ,Ψ)

g(c1,θ,Ψ)
, where

g(c1, θ,Ψ) = E
[
(exp(ε) + a1)1−θ

]
. Consider the following case distinction:

1. γ = 1: Then the RHS is simply from (6)

RHS = h(c1, θ,Ψ)

giving rise to the following case distinction with respect to θ (throughout, we assume

that θ > 0, θ <∞):

(a) θ ∈ (0, 1]: h(·) is the ratio of function f(·) which is strictly convex in exp(ε) in

the numerator and function g(·) which is concave in exp(ε) in the denominator

(the denominator equals 1 for θ = 1). Thus, an increase of (higher-order) risk

increases h(·).
(b) θ > 1: h(·) is the ratio of two strictly convex functions f(·), g(·) in exp(ε), where

the degree of convexity is stronger in the numerator than in the denominator (the

exponent in the numerator is θ and in the denominator it is 1 − θ). Thus, an

increase of (higher-order) risk increases h(·).

Thus, an increase of (higher-order) risk unambiguously increases the RHS in (6), in-

creasing precautionary savings.

2. γ < 1: For the behavior of h(·) the same logic as in item 1 applies. Furthermore,

an increase of risk decreases v (·), which, for γ < 1, increases v (·)1− 1
γ , since 1 −

1
γ
< 0. Thus, an increase of risk unambiguously increases the RHS in (6), increasing

precautionary savings.

3. γ > 1: We obtain the following case distinction from (5):

(a) θ ≤ 1
γ
: An increase of risk increases v(·)θ− 1

γ (respectively leaves it unchanged at 1

if θ = 1
γ
), so that an increase of risk unambiguously increases the RHS in (5),

increasing precautionary savings.

6



(b) θ > 1
γ
: the overall effect is ambiguous.

Thus, with a low IES (γ ≤ 1), which since Hall (1988) most macroeconomists regard as a

reasonable calibration, increasing risk leads to increasing savings. With a high IES (γ > 1),

however, precautionary savings behavior may not arise if risk attitudes are also strong (γ >
1
θ
). For a given degree of risk (µ

exp(ε)
2 , µ

exp(ε)
3 , µ

exp(ε)
4 ), the utility delivery from expected second

period consumption as measured by the certainty equivalent is smaller, the stronger risk

attitudes are. An increase of (higher-order) risk (µ
exp(ε)
2 , µ

exp(ε)
3 , µ

exp(ε)
4 ) implies a reduction

of the certainty equivalent. This reduction is stronger if risk attitudes are stronger so that

with a high IES the household may prefer to consume in the first period rather than to save

for the second period and thus savings may decrease in response to the increase of risk.3

A.6 Recursive Representation of Persistent Income Component

The 2nd to 4th central moments of zijt are given recursively by

µ2(zijt) =ρ2µ2(zij−1t−1) + µη2(s(t)) (7a)

µ3(zijt) =ρ3µ3(zij−1t−1) + µη3(s(t)) (7b)

µ4(zijt) =ρ4µ4(zij−1t−1) + 6ρ2µ2(zij−1t−1)µη2(s(t)) + µη4(s(t)). (7c)

A.7 Decomposition of Consumption Equivalent Variations

We evaluate the welfare implications of higher-order risk by computing the consumption

equivalent variation (CEV) that makes households that live in the world with shock distri-

butions NORM indifferent to live with shock distributions i ∈ {LK,LKSW}.

A.7.1 Decomposition in the 2-Period Model

We start with the decomposition for the two-period model of Section 3, which extends to the

quantitative model in a straightforward fashion, as we show in the next subsection. Under

the convenient transformation4 of utility V =
[(

1− 1
γ

)
U
] 1

1− 1
γ we compute

gic =
V (Ci)

V (CNORM)
− 1 (8)

3Parts of this intuition is also discussed in Krueger and Ludwig (2019) for changes of second-order risk.
4I.e., we retransform to the standard EZW functional, cf. Footnote 2.
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and thus the respective CEVs are defined as the percentage consumption loss in each period

from the respective distribution with higher order risk relative to the distribution NORM.

We further decompose the CEV into mean and distribution effects. The mean ef-

fect is the welfare effect stemming from changes in average consumption and the distri-

bution effect captures changes in the distribution of consumption. Formally, let E[Ci] =
1
2

(
ci0 +

∫
ci1(ε)dΨi(ε)

)
for i ∈ {NORM,LK,LKSW}. Denote by δic = E[Ci]

E[CNORM ]
− 1 the

percent change of consumption for i ∈ {LK,LKSW}. Then, the distribution effect corrects

for the percentage change of mean consumption and is thus given by

gdistr
i

c =
V
(

Ci

1+δic

)

V (CNORM)
− 1 =

1 + gic
1 + δic

− 1. (9)

The corresponding mean effect is accordingly

gmean
i

c = gic − gdistr
i

c =
1 + gic
1 + δic

δic ≈ δic. (10)

The distribution effect itself captures two changes. The first reflects the utility difference

stemming from the change of the average life-cycle consumption profile, which we refer to as

the life-cycle distribution effect. The second captures the utility change stemming from the

change of the cross-sectional distribution of stochastic second period consumption, which we

accordingly refer to as the cross-sectional distribution effect. Thus, we can rewrite gdistr
i

c as

gdistr
i

c = glcd
i

c + gcsd
i

c (11)

for the CEV stemming from the life-cycle redistribution (lcd) and cross-sectional distribution

(csd) effect.

To compute the gcsd
i

c , first let E[Ci | j] denote the age j specific mean consumption, i.e.,

E[Ci | j = 0] = ci0 and E[Ci | j = 1] =
∫
ci1(ε)dΨi(ε). Next compute the age j specific

consumption growth rate as δc
i

j = E[Ci|j]
E[CNORM |j] for i ∈ {LK,LKSW}. Then compute the

utility in distribution scenario i ∈ {LK,LKSW} after correcting for mean consumption

growth as

Ṽ i =

((
1

1 + δc
i

0

)1− 1
γ

ci
1− 1

γ

0 +

(
1

1 + δc
i

1

)1− 1
γ

v(ci1, θ,Ψ
i)1− 1

γ

) 1

1− 1
γ

,
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which for γ = 1 simplifies to

Ṽ i =
1

1 + δc
i

0

1

1 + δc
i

1

· ci0 · v(ci1, θ,Ψ
i) =

1

1 + δc
i

0

1

1 + δc
i

1

V i.

Having corrected for the percent change of age-specific mean consumption, the CEV from

the cross-sectional distribution effect is then

gcsd
i

c =
Ṽ i

V (CNORM)
− 1 =

1 + gic
1 + δic

− 1 (12)

and thus the life-cycle distribution effect follows as

glcd
i

c = gdistr
i

c − gcsdic . (13)

A.7.2 Decomposition in the Full Life Cycle Model

The decomposition into the mean and distribution effect is analogous to the two-period

model, where average consumption is given by

E[Ci] =
1

J + 1

J∑

j=0

∫
cij(aj, zj; s)dΨi

j(aj, zj; s)

for i ∈ {NORM,LK,LKSW}, where cij(aj, zj; s) is the consumption policy function in

distribution i and Φi
j(aj, zj; s) is the cross-sectional distribution.

To compute the cross-sectional distribution effect, let, as above, the age j specific con-

sumption growth rate be δc
i

j = E[Ci|j]
E[CNORM |j] for i ∈ {LK,LKSW}, where now E[Ci | j] =∫

cij(aj, zj; s)dΦi
j(aj, zj; s). Next, observe that

Ṽ i
J =

(
(1− β̂)

(
ciJ
δc
i

J

)1− 1
γ

) 1

1− 1
γ

=
1

δc
i

J

V B
J

v
(
Ṽ i
J

)
=

1

δc
i

J

v
(
V i
J

)
.

and thus

Ṽ i
J−1 =


(1− β̃)

(
1

δc
i

J−1

)1− 1
γ (
ciJ−1

)1− 1
γ + β̃

(
v
(
Ṽ i
J

))1− 1
γ




1

1− 1
γ
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which extends to any period j as

Ṽ i
j =


(1− β̃)

(
cij

δc
i

j

)1− 1
γ

+ β̃
(
v
(
Ṽ i
j+1

))1− 1
γ




1

1− 1
γ

.

With the parametric restriction γ = 1 the decomposition simplifies. For γ = 1 we get

Ṽ i
J = exp

(
(1− β̃) ln

(
ciJ
δc
i

J

))
=

(
1

δc
i

J

)1−β̃
V i
J

and thus

Ṽ i
J−1 = exp

(
(1− β̃) ln

(
ciJ−1

δc
i

J−1

)
+ β̃ ln

(
v
(
Ṽ i
J

)))

= exp

(
(1− β̃) ln

(
1

δc
i

J−1

)
+ (1− β̃) ln

(
ciJ−1

)
+ β̃(1− β̃) ln

(
1

δc
i

J

)
+ β̃ ln

(
v
(
V i
J

))
)

=

((
1

δc
i

J−1

)(
1

δc
i

J

)β̃)1−β̃

V i
J

Continuing along these lines we get

Ṽ i
0 =




J∏

j=0

(
1

δc
i

j

)β̃j



1−β̃

V i
0 .

With this construction we can now decompose the CEV into the cross-sectional and the

life-cycle distribution effects using (12) and (13).

B Fit of Estimated Process

Figure B.1 displays age and year profiles of the standardized third and fourth moments, i.e.,

of the coefficients of skewness and kurtosis, implied by the estimated theoretical moments

and their empirical counterparts.
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Figure B.1: Fit of Estimated Process for Post-Government Earnings: Standardized Moments

(a) Skewness over Age (b) Kurtosis over Age

(c) Skewness over Time (d) Kurtosis over Time

Notes: Moments are cross-sectional standardized moments. For each moment, age and year profiles are
based on a regression of the moment on a set of age and year dummies. Blue lines: empirical moments; red
dashed lines: theoretical moments implied by point estimates; shaded area denotes a 90% confidence band
based on the bootstrap iterations.

C Discretization of the FGLD

For each Flexible Generalized Lambda Distribution (FGLD) our discretization procedure is

as follows:

1. Determine the endpoints of a grid Gx̃ from the quantile function of the FGLD for a

small probability π̃1 = ε such that

x̃1 = Q(π̃1)

x̃n = Q(1− π̃1).

2. Build grid Gx̃ by drawing n equidistant nodes on the interval [x̃1, x̃n].

3. For x̃i ∈ Gx̃, i = 1, n− 1 compute auxiliary gridpoint ¯̃xi = x̃i+1+x̃i
2

.

4. On all ˜̃xi compute cumulative probability pi from the quantile function of the FGLD.

Since the quantile function of the FGLD maps ˜̃xi = Q(pi), this requires a numerical

solver to compute pi = Q−1(˜̃xi).
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5. Now assign to gridpoint x̃1 the probability π1 = p1 and to all gridpoints i, i = 2, . . . , n−
1, the probability πi = pi − pi−1 and to gridpoint x̃n the probability 1− pn−1.

D Calibration Appendix

D.1 Moments of the FGLD Distribution

Tables D.1– D.3 summarize the moments for distributions NORM, LK, and LKSW, and

Table D.4 contains the corresponding parameters of λ of the fitted FGLD distributions.

Table D.1: Moments: Distribution NORM

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 0 0.008
fitted 0.05 0 0.008
discrete 0.05 0 0.008
Persistent Shock—Contraction:
target 0.022 0 0.001
fitted 0.022 0 0.001
discrete 0.022 0 0.001
Persistent Shock—Expansion:

target 0.009 0 0
fitted 0.009 0 0
discrete 0.009 0 0

Notes: This table shows the target central moment together with the central moment of the fitted FGLD,

and of the discretized FGLD for the distribution NORM, cf. Section 6.2.
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Table D.2: Moments: Distribution LK

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 0 0.219
fitted 0.05 0 0.219
discrete 0.05 0 0.219
Persistent Shock—Contraction:
target 0.022 0 0.061
fitted 0.022 0 0.061
discrete 0.022 0 0.061
Persistent Shock—Expansion:

target 0.009 0 0.008
fitted 0.009 0 0.008
discrete 0.009 0 0.008

Notes: This table shows the etarget central moment together with the central moment of the fitted FGLD,

and of the discretized FGLD for the distribution LK, cf. Section 6.2.

Table D.3: Moments: Distribution LKSW

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 -0.047 0.102
fitted 0.05 -0.047 0.102
discrete 0.051 -0.051 0.107
Persistent Shock—Contraction:
target 0.022 -0.016 0.066
fitted 0.022 -0.016 0.066
discrete 0.023 -0.02 0.07
Persistent Shock—Expansion:

target 0.009 -0.001 0.01
fitted 0.009 -0.001 0.01
discrete 0.009 -0.002 0.01

Notes: This table shows the target central moment together with the central moment of the fitted FGLD,

and of the discretized FGLD for the distribution LKSW, cf. Section 6.2.

13



Table D.4: Fitted Parameters of FGLD

Parameter λ̂1 λ̂2 λ̂3 λ̂4

NORM
Transitory: 1.000 0.359 5.203 5.203
Pers.—Contraction: 1.000 0.539 5.203 5.203
Pers.—Expansion: 1.000 0.871 5.203 5.203

LK
Transitory: 1.000 0.002 173.309 173.309
Pers.—Contraction: 1.000 0.002 244.954 244.954
Pers.—Expansion: 1.000 0.003 220.344 220.344

LKSW
Transitory: 0.197 0.008 92.959 57.755
Pers.—Contraction: 0.425 0.002 289.898 225.714
Pers.—Expansion: 0.894 0.003 275.612 256.735

Notes: This table shows the estimated λ-values for the fitted FGLD for distributions NORM, LK and

LKSW, cf. Section 6.2.
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D.2 The Bend Point Formula and the Pension Indexation Factor

Approximating the AIME with the last income state before entering into retirement zjr−1

the primary insurance amount according to the bend point formula is determined as follows:

p(zjr−1) =





s1zjr−1 for zjr−1 < b1

s1b1 + s2 (zjr−1 − b1) for b1 ≤ zjr−1 < b2

s1b1 + s2 (b2 − b1) + s3 (zhr−1 − b2) for b2 ≤ zjr−1 < b3

s1b1 + s2 (b2 − b1) + s3 (b3 − b2) for zjr−1 ≥ b3

Table D.5 contains the calibrated values of the pension indexation factor %, which is

required to clear the budget of the pension system.

Table D.5: Pension Indexation Factor %

CR NCR
NORM 0.6817 0.6692
LK 0.7007 0.6787
LKSW 0.6866 0.6758

Notes: Calibrated pension benefit level % under a balanced budget. CR: cyclical risk, NCR: no cyclical risk.

D.3 Moments of the Earnings Process

Table D.6 shows cross-sectional central moments of the earnings distribution in logs and

levels at labor market entry (age 25) and exit (age 60). We observe that all distributions

are skewed to the right in levels and that, despite left skewness in logs, right skewness of

distribution LKSW is higher in levels than of distribution NORM. Furthermore, the variance

is initially lower in distribution LKSW than in distribution NORM.5 Both features constitute

a source of welfare gains from higher-order income risk, whereas the higher kurtosis in levels

and the increasing variance work against it. Finally, skewness and in particular kurtosis in

levels under (counterfactual) distribution LK are extremely high. Left-skewness in logs in

distribution LKSW substantially reduces both moments.

5By construction, the variance of the log earnings distribution is the same across distribution scenarios.
The difference of 0.01 showing up at age 60 is due to numerical inaccuracies of coarse grids for assets a and
the persistent income state z.
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Table D.6: Moments of the Earnings Distribution in Logs and Levels

Logs Levels
Age 25 (j = 0)

NORM LK LKSW NORM LK LKSW
µ2 0.06 0.06 0.06 0.06 0.36 0.05
µ3 0 0 -0.06 0.01 4.44 0.09
µ4 0.01 0.24 0.13 0.01 129.43 0.41

Age 60 (j = 35)
µ2 0.23 0.24 0.24 0.25 0.86 0.3
µ3 0 0 -0.12 0.21 27.52 1.12
µ4 0.15 0.56 0.47 0.5 27889.82 27.85

Notes: Moments of cross-sectional distribution of log earnings and earnings at ages 25 (j = 0) and 60

(j = 35) for each scenario of shock distributions. NORM: FGLD with moments of the normal distribution,

LK: FGLD with excess kurtosis, LKSW: FGLD with excess kurtosis and left-skewness (in logs).

Figures D.1 and D.2 summarize the calibration of the earnings process during the work-

ing period and the pension income in retirement for central moments 1-4 of the earnings

distribution in levels and logs, respectively.
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Figure D.1: Moments of Life-Cycle Earnings by Age: Logs

(a) Mean of Logs (b) Variance of Logs

(c) Third Central Moment of Logs (d) Fourth Central Moment of Logs

Notes: Figures show moments of cross-sectional distribution of log earnings over the life-cycle for each
scenario of shock distributions. NORM: FGLD with moments of the normal distribution, LKSW: FGLD
with excess kurtosis and left-skewness (in logs).

17



Figure D.2: Moments of Life-Cycle Earnings by Age: Levels

(a) Mean (b) Variance

(c) Third Central Moment (d) Fourth Central Moment

Notes: Figures show moments of cross-sectional distribution of earnings over the life-cycle for each scenario
of shock distributions. NORM: FGLD with moments of the normal distribution, LKSW: FGLD with excess
kurtosis and left-skewness (in logs).
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E Additional Results

E.1 Comparison to the Normal Distribution

Table E.1 documents the CEV in distribution NORM (an FGLD with zero skewness and

a kurtosis of 3) to one where shocks are drawn from a normal distribution using standard

Gaussian Quadrature methods. Differences are very small.

Table E.1: Welfare Effects of Cyclical Idiosyncratic Risk: FGLD(NORM) versus Normal
Distribution

CEV gc gmeanc glcdc gcsdc
Risk Aversion, θ = 1
NORM -1.72 0.499 -2.175 -0.044
NORMAL -1.722 0.5 -2.176 -0.045
Risk Aversion, θ = 2
NORM -3.263 0.898 -4.038 -0.123
NORMAL -3.268 0.898 -4.043 -0.123
Risk Aversion, θ = 3
NORM -4.607 1.229 -5.638 -0.198
NORMAL -4.615 1.23 -5.646 -0.199
Risk Aversion, θ = 4
NORM -5.758 1.515 -7.009 -0.264
NORMAL -5.767 1.516 -7.018 -0.265

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk expressed
as consumption equivalent variation (CEV) for FGLD distribution NORM and the normal distribution,
NORMAL. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the
distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution
of consumption, where gc = gmeanc + glcdc + gcsdc .

E.2 Sensitivity Analyses

In this appendix, we consider an expected utility formulation with CRRA preferences where

we restrict θ = 1
γ
, we analyze the role of borrowing constraints in the model, and we in-

vestigate how results are affected by our choice of the interest rate. Table E.2 summarizes

the results and further details are contained in Tables E.3 to E.5. This underscores the

robustness of our findings also with respect to the dominant role played by the life-cycle

distribution effect glcdc .

CRRA Utility. Assuming CRRA preferences with θ = 1
γ

we conduct experiments for θ ∈
{2, 3, 4}, since for θ = 1 results are of course as before. As in our previous baseline
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Table E.2: Total CEV gc of Cyclical Idiosyncratic Risk: Sensitivity Analyses

Baseline CRRA BC IR
Risk Aversion, θ = 1

NORM -1.720 -1.720 -1.893 -1.905
LKSW -1.443 -1.443 -1.612 -1.611

Risk Aversion, θ = 2
NORM -3.263 -2.552 -3.609 -3.627
LKSW -3.516 -2.564 -4.293 -3.972

Risk Aversion, θ = 3
NORM -4.607 -3.335 -5.113 -5.123
LKSW -7.177 -4.456 -9.725 -8.253

Risk Aversion, θ = 4
NORM -5.758 -4.072 -6.404 -6.399
LKSW -12.171 -7.530 -17.14 -14.283

Notes: Total welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk
expressed as Consumption Equivalent Variation (CEV) gc in the distribution scenario NORM and the lep-
tokurtic and left-skewed scenario LKSW. CRRA: CRRA utility, BC: “borrowing constraints”, IR: interest
rate.

analysis, we recalibrate discount factor β for each value of θ. For θ ∈ {2, 3, 4} we ob-

tain β ∈ {0.982, 0.990, 0.995} and thus, in contrast to our experiments with EZW utility,

the calibrated discount factor is increasing in θ. With increasing risk attitudes θ the precau-

tionary savings motive is strengthened, while the simultaneous reduction of the IES γ = 1
θ

reduces life-cycle savings. The second effect turns out to dominate so that calibration calls

for less impatience in order to hold the average asset accumulation unchanged.

Column 3 of Table E.2 summarizes the results on the welfare effects of cyclical idiosyn-

cratic risk for this alternative choice of preferences. In comparison to Table 4 we observe a

lower increase of welfare losses from cyclical idiosyncratic risk when risk aversion is increased

(the IES is decreased). Likewise, our difference in difference comparison to scenario NORM

shows that higher-order income risk still substantially matters for the welfare costs of cyclical

idiosyncratic risk, but less than with EZW preferences. The reason is that with a lower IES

the overall consumption profile is smoother and thus reacts less to changes in risk. Thus, the

simultaneous reduction of the IES when relative risk attitudes are strengthened confounds

the welfare analysis.

The Role of Borrowing Constraints. In our baseline calibration households start their

economic life with positive assets and calibrated impatience is relatively strong. As a conse-

quence, very few households are borrowing constrained (numerically, the fraction is basically
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zero in all scenarios). We now investigate the sensitivity of our results with regard to the

role of the borrowing constraint by setting initial assets to 0. In this experiment, we do not

recalibrate because we aim at disentangling the role of the constraint.

As a consequence of zero initial assets, the fraction of borrowing constrained hand-to-

mouth consumers increases strongly. For θ = 1, roughly 6.6% of all households are con-

strained in scenario NORM and 4.0% in scenario LKSW. Column 4 of Table E.2 shows that

this leads to higher overall welfare losses from cyclical idiosyncratic risk and an increasing

importance for higher-order risk. For θ = 4 the difference in the CEV between scenar-

ios LKSW and NORM is about −10.7%p, compared to −6.4%p reported in Table 4. Thus,

borrowing constraints increase the role played by higher-order income risk for the welfare

losses from cyclical idiosyncratic risk.

Lower Interest Rate. Next, rather than assuming an annual interest rate of 4.2% we re-

duce it to 2%. We recalibrate the discount factor β in all four experiments for θ ∈ {1, 2, 3, 4},
which gives β ∈ {0.990, 0.988, 0.986, 0.983} and thus the discount factors are higher because

lower returns reduce life-cycle savings which is offset in calibration by stronger patience.

While the role played by higher-order income risk for the welfare losses from cyclical id-

iosyncratic risk is slightly increased, the difference to the baseline calibration is modest.

E.3 Separating the role of kurtosis

Table E.6 provides additional insights on the roles of the different components, i.e., here

the excess kurtosis in isolation, of higher order risk for the high risk aversion calibration

with θ = 4. To this end we calibrate an additional distribution scenario, LK, that features

the estimated excess kurtosis, but is symmetric (in the distribution in logs). Note that this

implies for the parameters of the FGLD that λ3 = λ4. Welfare costs of cyclical risk are about

4% higher in this distribution scenario than in scenario NORM.
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Table E.3: Welfare Effects of Cyclical Idiosyncratic Risk: CRRA Preferences

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 2

NORM -2.552 0.709 -3.139 -0.122 0
LK -2.813 0.756 -3.456 -0.113 -0.261
LKSW -2.564 0.626 -3.074 -0.115 -0.012

Risk Aversion, θ = 3
NORM -3.335 0.901 -4.035 -0.201 0
LK -4.055 0.966 -4.803 -0.218 -0.72
LKSW -4.456 0.937 -5.121 -0.272 -1.121

Risk Aversion, θ = 4
NORM -4.072 1.081 -4.876 -0.277 0
LK -6.081 1.243 -6.91 -0.414 -2.009
LKSW -7.53 1.337 -8.267 -0.6 -3.458

Notes: Welfare gains (positive numbers) and losses (negative numbers) for CRRA utility where θ = 1
ρ of cycli-

cal idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the distribution with normal
moments NORM, the leptokurtic distribution LK and the leptokurtic and left-skewed distribution LKSW. gc:
total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the distribution of
consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution of consumption,
where gc = gmeanc + glcdc + gcsdc . ∆gc = gic − gNORMc , for i ∈ {LK,LKSW}: change in percentage points
relative to distribution NORM.
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Table E.4: Welfare Effects of Cyclical Idiosyncratic Risk: Zero Initial Assets

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.893 0.54 -2.317 -0.116 0
LK -2.139 0.622 -2.706 -0.055 -0.246
LKSW -1.612 0.439 -2.001 -0.05 0.281

Risk Aversion, θ = 2
NORM -3.609 0.965 -4.326 -0.248 0
LK -4.091 0.999 -4.938 -0.152 -0.482
LKSW -4.293 0.932 -5.035 -0.19 -0.684

Risk Aversion, θ = 3
NORM -5.113 1.314 -6.06 -0.367 0
LK -7.685 1.445 -8.83 -0.299 -2.572
LKSW -9.725 1.573 -10.812 -0.486 -4.612

Risk Aversion, θ = 4
NORM -6.404 1.61 -7.528 -0.485 0
LK -13.586 1.914 -14.924 -0.577 -7.182
LKSW -17.14 2.112 -18.314 -0.939 -10.736

Notes: Welfare gains (positive numbers) and losses (negative numbers) with zero initial assets of cyclical
idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the distribution with normal
moments NORM, the leptokurtic distribution LK and the leptokurtic and left-skewed distribution LKSW. gc:
total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the distribution of
consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution of consumption,
where gc = gmeanc + glcdc + gcsdc . ∆gc = gic − gNORMc , for i ∈ {LK,LKSW}: change in percentage points
relative to distribution NORM.
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Table E.5: Welfare Effects of Cyclical Idiosyncratic Risk: Lower Rate of Return

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.905 0.24 -2.11 -0.035 0
LK -2.158 0.274 -2.406 -0.025 -0.253
LKSW -1.611 0.193 -1.777 -0.027 0.294

Risk Aversion, θ = 2
NORM -3.627 0.436 -3.958 -0.105 0
LK -3.945 0.445 -4.3 -0.09 -0.318
LKSW -3.972 0.411 -4.285 -0.098 -0.345

Risk Aversion, θ = 3
NORM -5.123 0.603 -5.554 -0.172 0
LK -6.786 0.65 -7.26 -0.177 -1.663
LKSW -8.253 0.711 -8.732 -0.232 -3.13

Risk Aversion, θ = 4
NORM -6.399 0.751 -6.919 -0.231 0
LK -11.362 0.904 -11.955 -0.311 -4.963
LKSW -14.283 1.027 -14.863 -0.446 -7.884

Notes: Welfare gains (positive numbers) and losses (negative numbers) with a lower rate of return
of r[%] = 2% of cyclical idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the
distribution with normal moments NORM, the leptokurtic distribution LK and the leptokurtic and left-
skewed distribution LKSW. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from
changes in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc = gic − gNORMc , for i ∈ {LK,LKSW}:
change in percentage points relative to distribution NORM.

Table E.6: The Welfare Effects of Cyclical Idiosyncratic Risk for Distribution Scenario LK

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 4

LK -9.738 1.731 -11.146 -0.322 -3.980

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk expressed
as Consumption Equivalent Variation (CEV) in the non-cyclical scenario that makes households indifferent
to the cyclical scenario. Displayed for scenario LK. gc: total CEV, gmeanc : CEV from changes of mean
consumption, glcdc : CEV from changes in the distribution of consumption over the life-cycle, gcsdc : CEV
from changes in the cross-sectional distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc =
gLKc − gNORMc : difference in percentage points relative to scenario NORM.
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Supplementary Appendix

(Not for Publication)

”Higher-Order Income Risk Over the Business Cycle”

(Christopher Busch and Alexander Ludwig)

S.A Fitting Moments of the FGLD

This supplementary appendix describes how we fit the Flexible Generalized Lambda Distri-

bution (FGLD). The quantile function is

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
(S.A.1)

where λ1 is a location and λ2 is a scale parameter, λ3, λ4 in turn are tail index parameters.1

We will need to use the relationship between the quantile function and the probability

density function (PDF). Noticing that x = F−1(p) = Q(p) and F (x) = p we can derive the

PDF f(x) from the quantile function Q(p) by

f(x) = f(Q(p)) =
∂F (x)

∂x
=

∂p

∂Q(p)
=

1
∂Q(p)
∂p

. (S.A.2)

Differentiating (S.A.1) we therefore find the PDF to be

f(x) = f(Q(p)) =
λ2

pλ3−1 + (1− p)λ4−1
. (S.A.3)

Lakhany and Mausser (2000) and Su (2007) describe how to estimate the parameters

of (S.A.1) using moments of the distribution. The kth raw moment of a random variable X

is given as

E
[
Xk
]

=

∫ ∞

−∞
xkf(x)dx, k ≥ 1

where f(x) is the distribution function. Setting k = 1 gives the expected value µ1 = E[X].

1The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .
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The kth central moment is defined as

E
[
(X − µ1)k

]
=

∫ ∞

−∞
(x− µ1)k f(x)dx, k ≥ 1.

We can use binomial expansion to write central moments in terms of raw moments as

E
[
(X − µ1)k

]
= E

[
k∑

j=0

(
k

j

)
(−1)j (X)k−j µj1

]
(S.A.4)

where
(
k
j

)
are binomial coefficients.

Now apply the same logic to evaluate the kth raw moment of a percentile function. Use

variable substitution p = Q−1(p) = F (x), noticing that Q−1(−∞) = 0 and Q−1(∞) = 1 so

that the integration bounds change. Furthermore, use (S.A.2) giving f(x) = dp
dQ(p)

to rewrite

∫ ∞

−∞
xkf(x)dx =

∫ 1

0

Q(p)k
dp

dQ(p)
dQ(p) =

∫ 1

0

Q(p)kdp. (S.A.5)

Hence the kth raw moment using quantile functions is given by

E
[
Xk
]

=

∫ 1

0

Q(p)kdp.

Next, observe that (S.A.1) can be rewritten as

Q(p) = F−1(p) = x = λ1 −
1

λ2λ3

+
1

λ2λ4

+
1

λ2

(
pλ3

λ3

− (1− p)λ4
λ4

)

= a+ bQ̃(p).

Let X be the random variable with quantile function Q(p) and let Y be the random variable

with quantile function Q̃(p). We then have

E[X] = a+ bE[Y ], k = 1

E
[
(X − E[X])k

]
= bkE

[
(Y − E[Y ])k

]
, k > 1

for the kth central moments. In what follows, we denote the raw moments of Y by ν,

hence νk = EY k. Using (S.A.4) we thus get for the first four central moments (recalling
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that
(
n
k

)
= n!

k!(n−k)!
, with

(
n
n

)
=
(
n
0

)
= 1):

µ1 = E[X] = a+ bE[Y ] = a+ bν1

= λ1 −
1

λ2λ3

+
1

λ2λ4

+
1

λ2

ν1.

For the remaining moments, we rewrite (S.A.4) to get

E
[
(Y − E[Y ])k

]
= E

[
k∑

j=0

(
k

j

)
(−1)j (Y )k−j ν(1)j

]

=

[
k∑

j=0

(
k

j

)
(−1)j E

[
(Y )k−j

]
ν(1)j

]

We can therefore write explicitly

µ2 = b2
(
E[Y 2]− (E[Y ])2

)
=

1

λ2
2

(ν2 − ν2
1)

µ3 = b3E

[
3∑

j=0

(
3

j

)
(−1)j (Y )3−j (ν1)j

]

= b3E
[
Y 3 − 3Y 2ν1 + 3Y ν2

1 − ν3
1

]

=
1

λ3
2

(
ν3 − 3ν1ν2 + 2ν3

1

]

µ4 = b4E

[
4∑

j=0

(
4

j

)
(−1)j (Y )4−j (ν1)j

]

= b4E
[
Y 4 − 4Y 3ν1 + 6Y 2ν2

1 − 4Y ν3
1 + ν4

1

]

=
1

λ4
2

(
ν4 − 4ν1ν3 + 6ν2

1ν2 − 3ν4
1

)
.

Finally, we need to determine expressions for the raw moments of Y . To this end, we

have to evaluate

E
[
Y k
]

= νk =

∫ 1

0

Q̃(p)kdp =

∫ 1

0

(
pλ3

λ3

− (1− p)λ4
λ4

)k
dp

3



Again using binomial expansion, we can rewrite this integral as

νk =

∫ 1

0

k∑

j=0

(
k

j

)
(−1)j

(
pλ3

λ3

)k−j
−
(

(1− p)λ4
λ4

)j
dp

=
k∑

j=0

(
k

j

)
(−1)j

λk−j3 λj4

∫ 1

0

(
pλ3(k−j) − (1− p)λ4j

)
dp

=
k∑

j=0

(
k

j

)
(−1)j

λk−j3 λj4
β (λ3(k − j) + 1, λ4j + 1) ,

where β(·, ·) is the β-function. Observe that the β-function is only well defined if all argu-

ments are positive. This requires that

λ3(k − j) + 1 > 0 and λ4j + 1 > 0

for all k, j. This equality can only be binding if λ3, λ4 < 0. Since j ≤ k we can rewrite the

above inequality as

min(λ3, λ4) > −1

k
.

Observe that the RHS in the above is decreasing in k. Therefore, if we target at matching

moments up to k = 4, the constraint reads as min(λ3, λ4) > −1
4
.
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We can also write out νk, for k = 1, . . . , 4 explicitly as functions of λ3, λ4 as:

ν1 =
1∑

j=0

(
1

j

)
(−1)j

λ1−j
3 λj4

β (λ3(1− j) + 1, λ4j + 1)

=
1

λ3

β (λ3 + 1, 1)− 1

λ4

β (1, λ4 + 1)

=
1

λ3(λ3 + 1)
− 1

λ4(λ4 + 1)

ν2 =
2∑

j=0

(
2

j

)
(−1)j

λ2−j
3 λj4

β (λ3(2− j) + 1, λ4j + 1) = ν1(λ3, λ4)

=
1

λ2
3

β (2λ3 + 1, 1)− 2
1

λ3λ4

β (λ3 + 1, λ4 + 1) +
1

λ2
4

β (1, 2λ4 + 1)

=
1

λ2
3 (2λ3 + 1)

+
1

λ2
4 (2λ4 + 1)

− 2
1

λ3λ4

β (λ3 + 1, λ4 + 1) = ν2(λ3, λ4)

ν3 =
3∑

j=0

(
3

j

)
(−1)j

λ3−j
3 λj4

β (λ3(3− j) + 1, λ4j + 1)

=
1

λ3
3

β (3λ3 + 1, 1)− 3

λ2
3λ4

β (2λ3 + 1, λ4 + 1) +
3

λ3λ2
4

β (λ3 + 1, 2λ4 + 1)− 1

λ3
4

β (1, 3λ4 + 1)

=
1

λ3
3(3λ3 + 1)

− 1

λ3
4(3λ4 + 1)

− 3

λ2
3λ4

β (2λ3 + 1, λ4 + 1) +
3

λ3λ2
4

β (λ3 + 1, 2λ4 + 1) = ν3(λ3, λ4)

ν4 =
4∑

j=0

(
4

j

)
(−1)j

λ4−j
3 λj4

β (λ3(4− j) + 1, λ4j + 1)

=
1

λ4
3

β (4λ3 + 1, 1)− 4

λ3
3λ4

β (3λ3 + 1, 2λ4 + 1) +
6

λ2
3λ

2
4

β (2λ3 + 1, 2λ4 + 1)− 4

λ3λ3
4

β (λ3 + 1, 3λ4 + 1) +

1

λ4
4

β (1, 4λ4 + 1)

=
1

λ4
3(4λ3 + 1)

+
1

λ4
4(4λ4 + 1)

− 4

λ3
3λ4

β (3λ3 + 1, 2λ4 + 1)− 4

λ3λ3
4

β (λ3 + 1, 3λ4 + 1) +

6

λ2
3λ

2
4

β (2λ3 + 1, 2λ4 + 1) = ν4(λ3, λ4).

From the above observe that the third and fourth central moments µ3, µ4 of random

variable X are only functions of λ3, λ4. Therefore, the procedure is to determine λ3, λ4

jointly to target µ3, µ4 under the parameter restriction min(λ3, λ4) > −1
4
. Next, we can

successively determine λ2 from targeting µ2 and, finally, λ1 by targeting µ1.
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S.B A Numerical Example of the Two-Period Model

In this supplementary appendix, we present a quantitative illustration of the two-period

model in order to show that higher-order income risk (in logs) may indeed lead to lower

precautionary savings and utility gains. Specifically, we consider three different parameteri-

zations of discrete PDFs Ψ(ε) based on Proposition S.B.1: NORM is a symmetric distribution

with a kurtosis of α4 = 3 as for a normal distribution. Distribution LK is also symmetric

but strongly leptokurtic with a kurtosis of α4 = 30, and distribution LKSW additionally

introduces left-skewness of α3 = −5. For all distributions we set the variance µε2 = 0.5.

Throughout we normalize such that E[exp(ε)] = 1. To investigate the role of higher-order

risk attitudes we consider two parametrizations with θ ∈ {1, 4}. Throughout, we set the

IES γ equal to 1, thus we focus on risk sensitive preferences.

S.B.1 Shocks

The shock ε in this two-period model is taken to be discrete. Specifically, we consider a

simple lottery such that ε ∈ {εl, ε0, εh} with εl < ε0 < εh and respective probabilities {(1−
p) · q, p, (1− p) · (1− q)}. This simple structure enables us to derive a parametrization with

a closed form representation for the variance, skewness and kurtosis of the shock process, as

stated in the following proposition:2

Proposition S.B.0 Let ε ∈ {εl, ε0, εh}, drawn with respective probabilities {(1 − p) ·
q, p, (1− p) · (1− q)}. Then, if and only if α4 > 1 and, for α3 6= 0 in addition

1. either α3 ∈ (0,
√
α4 − 1)

2. or α3 ∈ (−√α4 − 1, 0),

2Our approach extends Ebert (2015), who analyzes skewness using a two-point distribution, to the fourth
moment.

6



we match µ2, α3, α4, with the normalization E[exp(ε)] = 1 by choosing

q =
1

2





+1
2

√
1−

4
α4
α23
−4

4
α4
α23
−3

if α3 > 0

−1
2

√
1−

4
α4
α23
−4

4
α4
α23
−3

if α3 < 0

0.5 if α3 = 0

p =





1− (2q−1)2

q(1−q)α2
3

if α3 6= 0

1− 1
α4

if α3 = 0

∆ε =





√
µ2α3

2q−1
if α3 6= 0

2
√
µ2
√
α4 if α3 = 0,

and

εl = − ln [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp(∆ε))]

ε0 = εl + (1− q)∆ε

εh = εl + ∆ε.

Proof. See Section S.B.5.

This representation of risk is useful because it enables us to transparently illustrate how

higher-order income risk affects the distribution using a very simple structure with a closed-

form solution from payoffs to the respective moments of higher-order income risk.

The upper part of Table S.B.1 summarizes the moments for the calibration of ε for

these three distributions. The lower part shows how this translates into respective moments

in level of the innovation, exp(ε). Going from distribution NORM to distribution LK we

observe that not only the kurtosis increases strongly but also the variance. Simultaneously,

the distribution becomes more skewed to the right. Thus, whether the higher kurtosis of

the innovation ε also leads to welfare losses (or a strong increase in precautionary savings)

depends on whether the effects on the variance and kurtosis dominate those on the skewness,

cf. equations (1) and (2).

In turn, going from distribution NORM to distribution LKSW we observe that the dis-

tribution is now more skewed to the left and features a higher kurtosis. However, at the

same time, the variance goes down quite strongly. Thus, whether the simultaneously higher

kurtosis and lower skewness (or: increased left-skewness) of the innovation ε relative to distri-

bution NORM lead to welfare losses (or a strong increase in precautionary savings) depends

7



on whether the effects on the skewness and kurtosis dominate those on the variance, again

see equations (1) and (2).

Table S.B.1: 2-Period Model: Shocks, standardized moments

Moments of Innovation in Logs, ε
µε2 αε3 αε4

NORM 0.5 0 3
LK 0.5 0 30
LKSW 0.5 -5 30
Moments of Innovation in Levels, exp(ε)

µ
exp(ε)
2 α

exp(ε)
3 α

exp(ε)
4

NORM 0.5868 1.4885 3.7882
LK 11.6316 7.5458 57.9669
LKSW 0.1039 0.5684 4.8371

Notes: Standardized moments of the discrete shock distribution.

Table S.B.2: 2-Period Model: Shocks, central moments

Moments of Innovation in Logs, ε
µε2 µε3 µε4

NORM 0.5 0 0.75
LK 0.5 0 7.5
LKSW 0.5 -1.7678 7.5
Moments of Innovation in Levels, exp(ε)

µ
exp(ε)
2 µ

exp(ε)
3 µ

exp(ε)
4

NORM 0.5868 0.6691 1.3045
LK 11.6316 299.3406 7842.5727
LKSW 0.1039 0.0190 0.0523

Notes: Central moments of the discrete shock distribution.

Figure S.B.1 plots the the corresponding PDFs Ψ(ε). Relative to NORM, the distribution

LK leads to a fanning out of the shocks. As can be seen for the realization of exp(ε0) this

induces a shift of the shock realizations to the left such that E[ε] is reduced from −0.24

to −0.57. Moving from distribution LK to distribution LKSW by additionally introducing

skewness shifts the probability mass to the left tail such that E[ε] increases to −0.11. From

this observation we know from Proposition 1 that with logarithmic utility (θ = 1), we have

welfare losses from the symmetric and leptokurtic distribution LK and welfare gains for the

additionally left skewed distribution LKSW if households do not have access to a savings

8



technology.

Figure S.B.1: Distribution of ε

Notes: Distribution function of the discrete shock with three points as in Proposition S.B.1 under the three

scenarios NORM, LK, and LKSW.

S.B.2 Allocations

Table S.B.3 reports results on allocations, assuming that households have access to a sav-

ings technology. Increasing risk attitude coefficient θ leads to more precautionary savings

and reduces the differences in precautionary savings across scenarios. Holding θ constant,

compared to the distribution NORM we observe more precautionary savings for distribu-

tion LK and thus the effects of increased variance and kurtosis dominate the effects of higher

skewness. In contrast, with θ constant we observe less precautionary savings for distribu-

tion LKSW and thus the effects of the lower variance dominate the effects of higher kurtosis

and left-skewness.

Table S.B.4 displays the welfare consequence if there is no access to a savings technology

under a binding budget constraint in column NST and with access in column ST. First,

with θ = 1, the distribution LKSW leads to utility gains. Thus, for our shock parametriza-

tion, the positive welfare effects of lower skewness dominate the losses of an increased kurto-

sis. This is true for both scenarios NST, cf. Proposition 1, as well as for scenario ST. Second,

under NST utility consequences are strongly increasing in θ, as we learned from equation (1).

Third, both gains and losses decrease in scenario ST compared to scenario NST. The rea-
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Table S.B.3: Results from 2-Period Model: Allocations

c0 E[c1] a1

Risk Aversion, θ = 1
NORM 0.837 1.162 0.162
LK 0.773 1.226 0.226
LKSW 0.895 1.104 0.104
Risk Aversion, θ = 4
NORM 0.671 1.328 0.328
LK 0.662 1.337 0.337
LKSW 0.614 1.385 0.385

Notes: Allocations in the two-period model.

son is the precautionary savings response, which reduces utility losses from risk in both the

denominator and the numerator of the CEV calculation. Fourth, as a consequence of the

precautionary savings response, absolute values of the CEV are lower with higher risk aver-

sion in scenario ST. This shows that the utility consequences of higher-order risk, expressed

in terms of CEVs, may be non-monotonic in the degree of risk aversion.

Table S.B.4: Results from 2-Period Model: CEV

NST ST
Risk Aversion, θ = 1
LK -14.82% -11.75%
LKSW 7.03% 6.76%
Risk Aversion, θ = 4
LK -66.20% -3.22%
LKSW -65.35% 5.66%

Notes: CEV relative to NORM. NST: no access to savings technology. ST: assess to savings technology.

S.B.3 Decomposition of Consumption Equivalent Variations

Table S.B.5 reports the results for the decomposition of the CEV, for sake of brevity only

for θ = 1 and with access to a savings technology (ST). With this calibration, most of the

changes appear in the cross-sectional distribution effect.
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Table S.B.5: Results from 2-Period Model: Decomposition of CEV for Log Utility

CEV gc gmeanc glcdc gcsdc
Baseline
LK -11.75% 0 -2.35% -9.40%
LKSW 6.76% 0 2.16% 4.59%
Impatience
LK -11.04% 0 -9.82% -1.22%
LKSW -4.10% 0 -10.50% 6.40%
Positive Interest Rate
LK -5.56% 2.65% -4.92% -3.30%
LKSW 1.70% 2.63% -4.85% 3.93%
Borrowing Constraint
LK -5.04% 0.34% -0.65% -4.73%
LKSW 2.26% 0.13% -0.26% 2.38%

Notes: CEV relative to NORM for θ = 1, ρ = 1 for scenario ST. LK: leptokurtik distribution, LKSW:

leptokurtik and skewed distribution.

S.B.4 Additional Model Elements

For the remaining exercises we add step by step model elements included in the quantitative

model. Throughout, we take θ = 1
ρ

= 1 and only analyze the welfare consequences in terms

of the consumption equivalent variation. Results are contained in the remaining rows of

Table S.B.5 .

Impatience. We first add a period discount factor β of 0.96, such that the discount factor

accounting for the 40-year periodicity is 0.9640 ≈ 0.19. This introduces a life-cycle savings

motive into the model and preferences now write as (for ρ 6= 1)

U =
1

1− ρ

(
(1− β̃)c

1− 1
ρ

0 + β̃v (c1, θ,Ψ)1− 1
ρ

)
,

where β̃ = β
1+β

and β is the raw time discount factor. As a consequence of discounting, the

life-cycle distribution effect becomes more potent. Households now take on debt to finance

consumption when young. Given the riskiness of second period consumption, borrowing

is much lower in distributions LK and LKSW than in distribution NORM. Therefore, the

life-cycle distribution effect is strongly negative.

Positive Returns. Next, we also assume a positive interest rate on savings with an annual

raw interest rate of 2%. Given the length of each model period of 40 real life years, this
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corresponds to R = 1.0240 ≈ 2.2. Thus, the budget constraints now write as

a1 = y0 − c0, c1 ≤ a1 ·R + y1.

Table S.B.5 shows that now the mean effect is non-zero. The reason is that savings are

inter-temporally shifted at a non-zero rate so that average consumption increases. Results

also show that the aforementioned life-cycle effects are muted. Still the life-cycle distribution

effects are negative.

Borrowing Constraints. Next, we add occasionally binding borrowing constraints at

zero borrowing, i.e., we add the constraint

a1 ≥ 0.

For the chosen parametrization this constraint turns out to be binding only in scenario NORM.

Since households are thus worse off in NORM relative to the other scenarios, welfare losses

in distribution LK decrease and gains in distribution LKSW increase.

Throughout all these scenarios, we observe that the cross-sectional distribution effect is

negative in scenario LK, and positive in scenario LKSW.

S.B.5 Proof of Proposition S.B.1

Proof. Take ε0 = µ1, thus

µ1 = pε0 + (1− p) (qεl + (1− q)εh)
= pµ1 + (1− p) (qεl + (1− q)εh)

⇔ µ1 = qεl + (1− q)εh.

Now, let εh = εl + ∆ε to get

µ1 = qεl + (1− q) (εl + ∆ε)

= εl + (1− q)∆ε.
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For the variance we get

µ2 = (1− p)
(
q(εl − µ1)2 + (1− q)(εh − µ1)2

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

2 + (1− q) (εh − (εl + (1− q)∆ε))
2)

= (1− p)
(
q(1− q)2 + (1− q)q2

)
∆2
ε

= (1− p)q(1− q)∆2
ε.

For the third central moment µ3 we get

µ3 = (1− p)
(
q(εl − µ1)3 + (1− q)(εh − µ1)3

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

3 + (1− q) (εh − (εl + (1− q)∆ε))
3)

= (1− p)
(
−q(1− q)3 + (1− q)q3

)
∆3
ε

= (1− p)q(1− q)
(
−(1− q)2 + q2

)
∆3
ε

= (1− p)q(1− q)(2q − 1)∆3
ε

and we can thus write the skewness α3 as

α3 =
µ3√
µ2

3 =
2q − 1√

(1− p)q(1− q)
.

For the fourth central moment µ4 we get

µ4 = (1− p)
(
q(εl − µ1)4 + (1− q)(εh − µ1)4

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

4 + (1− q) (εh − (εl + (1− q)∆ε))
4)

= (1− p)
(
q(1− q)4 + (1− q)q4

)
∆4
ε

= (1− p)q(1− q)
(
(1− q)3 + q3

)
∆4
ε

= (1− p)q(1− q)
(
(1− 2q + q2)(1− q) + q3

)
∆4
ε

= (1− p)q(1− q)
(
1− 3q + 3q2

)
∆4
ε

and can therefore write the kurtosis as

α4 =
µ4

µ2
2

=
3q2 − 3q + 1

(1− p)q(1− q) .
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To summarize, the terms we seek to match are

µ2 = (1− p)q(1− q)∆2
ε, (S.B.6a)

α3 =
2q − 1√

(1− p)q(1− q)
, (S.B.6b)

α4 =
3q2 − 3q + 1

(1− p)q(1− q) . (S.B.6c)

To obtain α4 > 0 we require p ∈ (0, 1), q ∈ (0, 1) and

q2 − q +
1

3
> 0

⇔
(
q − 1

2

)2

> − 1

12

which always holds.

Let us next characterize the solution according to the following case distinction:

1. α3 = 0. Then we obviously have q = 1− q = 0.5. We can accordingly rewrite (S.B.6a)

and (S.B.6c) as

µ2 = (1− p)1

4
∆2
ε,

α4 =
1

(1− p) ,

and therefore

q =
1

2

p = 1− 1

α4

∆ε = 2
√
µ2

√
α4

characterizes the solution. Notice that α4 > 0 and thus p < 1. To get p > 0 we require

1− 1

α4

> 0 ⇔ α4 > 1.

2. α3 6= 0. From (S.B.6a) we get

(1− p)q(1− q) =
µ2

∆2
ε

14



Using this in (S.B.6b) and (S.B.6c) we get

α3 =
(2q − 1)∆ε√

µ2

, (S.B.7a)

α4 =
(3q2 − 3q + 1)∆2

ε

µ2

. (S.B.7b)

Now use (S.B.7a) in (S.B.7b) to get

(3q2 − 3q + 1)

(2q − 1)2
=
α4

α2
3

⇔ (3q2 − 3q + 1) =
α4

α2
3

(
4q2 − 4q + 1

)

⇔ q2

(
4
α4

α2
3

− 3

)
− q

(
4
α4

α2
3

− 3

)
+
α4

α2
3

− 1 = 0

⇔ q2 − q +

α4

α2
3
− 1

4α4

α2
3
− 3

= 0

and thus

q± =
1

2
± 1

2

√√√√√√
1−

4α4

α2
3
− 4

4α4

α2
3
− 3

︸ ︷︷ ︸
=Ψ

(S.B.8)

Thus, the first restriction for q± ∈ (0, 1) is that Ψ > 0. Consider the following case

distinction:

(a) 4α4

α2
3
− 3 > 0 ⇔ α4

α2
3
> 3

4
: Then

1−
4α4

α2
3
− 4

4α4

α2
3
− 3

> 0

⇔ 4
α4

α2
3

− 3 > 4
α4

α2
3

− 4

⇔ 4 > 3

and thus for α4

α2
3
> 3

4
we get Ψ > 0.

(b) 4α4

α2
3
− 3 < 0 ⇔ α4

α2
3
< 3

4
then we obviously get a contradiction.

Thus, we require α4 >
3
4
α2

3.

Next, for both the positive and the negative root, we further require Ψ < 1. Again

15



investigate the case α4 >
3
4
α2

3. We get

1−
4α4

α2
3
− 4

4α4

α2
3
− 3

< 1

⇔
4α4

α2
3
− 4

4α4

α2
3
− 3

> 0

⇔ 4
α4

α2
3

− 4 > 0

⇔ α4

α2
3

> 1

and thus a necessary and sufficient condition for q± ∈ (0, 1) is:

α4 > α2
3. (S.B.9)

Since α3 = (2q−1)∆ε√
µ2

and since ∆ε > 0 (by construction) and
√
µ2 > 0 we choose the

positive root q? = q+ for a right-skewed distribution with α3 > 0 and the negative

root q? = q− to model a left-skewed with α3 < 0.

We next get from (S.B.7a) that

∆ε =

√
µ2α3

2q? − 1

and from (S.B.6a) that

p = 1− µ2

q?(1− q?)∆2
ε

= 1− (2q? − 1)2

q?(1− q?)α2
3

. (S.B.10)

We have already established that under condition (S.B.9) q? ∈ (0, 1). Next, we need

to establish conditions such that p ∈ (0, 1). From (S.B.10) we observe that q? ∈ (0, 1)

gives p < 1. Also observe that p > 0 is equivalent to

α2
3 >

(2q? − 1)2

q?(1− q?) (S.B.11)

(a) Case α3 < 0: Recall that for this case we take the negative root q?−, where

q?− =
1

2
− 1

2

√
Ψ > 0.

for Ψ ∈ (0, 1) iff α4 > α2
3. Thus the case α3 < 0 implies that α3 > −

√
α4. Next

16



observe that

(2q? − 1)2 = (1−
√

Ψ− 1)2 = Ψ

and

q?(1− q?) =

(
1

2
− 1

2

√
Ψ

)(
1

2
+

1

2

√
Ψ

)

=
1

4
− 1

4
Ψ =

1

4
(1−Ψ) .

Thus condition (S.B.11) can be rewritten as

α2
3 >

(2q? − 1)2

q?(1− q?) =
4Ψ

1−Ψ

⇔ α2
3(1−Ψ) > 4Ψ

⇔ α2
3

4α4

α2
3
− 4

4α4

α2
3
− 3

> 4

(
1−

4α4

α2
3
− 4

4α4

α2
3
− 3

)

⇔ α2
3

(
α4

α2
3

− 1

)
> 4

α4

α2
3

− 3−
(

4
α4

α2
3

− 4

)

⇔ α4 − α2
3 > 1

⇔ α3 > −
√
α4 − 1, since α3 < 0

which also implies that we require α4 > 1. Since −√α4 − 1 > −√α4 we thus

obtain as a necessary and sufficient condition for the case α3 < 0

α4 > 1 and α3 > −
√
α4 − 1 (S.B.12)

to get q ∈ (0, 1
2
), p ∈ (0, 1) and ∆ε > 0.

(b) Case α3 > 0: Recall that for this case we take the positive root q?+ where

q?+ =
1

2
+

1

2

√
Ψ > 0.

for Ψ ∈ (0, 1) iff α4 > α2
3 and thus α3 <

√
α4. Thus

(2q? − 1)2 = Ψ
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and

q?(1− q?) =

(
1

2
+

1

2

√
Ψ

)(
1

2
− 1

2

√
Ψ

)

=
1

4
− 1

4
Ψ =

1

4
(1−Ψ) .

and following the steps above we thus get

α4 − α2
3 > 1

⇔ α3 <
√
α4 − 1,

Since
√
α4 − 1 <

√
α4 we thus obtain as a necessary and sufficient condition for

the case α3 > 0

α4 > 1 and α3 <
√
α4 − 1 (S.B.13)

to get q ∈ (1
2
, 1), p ∈ (0, 1) and ∆ε > 0.

Finally, for εl given, the mean of the exponent of the random variable x is given by

E [exp(x)] = p exp (εl + (1− q)∆ε) + (1− p) (q exp (εl) + (1− q) exp (εl + ∆ε))

= exp(εl) [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp (∆ε))] .

Normalizing E [exp(x)] = 1 we thus get

εl = − ln [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp (∆ε))] .
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