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1 Introduction

Even in modern regulation systems such as Solvency II, the majority of insurance com-

panies determine their capital requirements using a pre-specified standard formula rather

than a self-developed internal risk capital model.1 However, various academic papers show

that the risk landscape may not be realistically depicted on the basis of such a standard-

ized approach, which can lead to incorrect steering incentives when portfolio decisions

are made. A relatively well known deficiency of the Solvency II standard formula is that

it disregards credit risks of any government counterparties in the European Economic

Area (EEA) or the Organisation for Economic Co-operation and Development (OECD).2

Gatzert and Martin (2012), for instance, identify this problem and show that there is a

gap between the results of an internal risk model and those of the standard formula in the

context of market risks. Becker and Ivashina (2015) find empirical evidence that regula-

tory constraints on insurance companies investing in the corporate bond market can lead

to portfolio distortions. Chen et al. (2019) find that relying on the square root rule for

the calculation of risk-based capital (RBC) may provide a misleading view of changing

diversification effects. In the case of equity risk, Fischer and Schlütter (2015) show that

insurers’ asset selection is highly sensitive to parameters of the standard formula and

can end up too risky or conservative. Braun et al. (2017) find that the standard formula

is likely to have an adverse impact on life insurers’ asset allocation, as it hinders insur-

ers in selecting an efficient investment portfolio. Furthermore, Pfeifer and Strassburger

(2008) provide evidence that for several classes of distributions, the standard formula

underestimates the true Solvency Capital Requirements (SCR). A more general criticism

regarding the regulatory framework is formulated by Scherer and Stahl (2021), stating

that the Solvency II standard formula ”lacks sound economic and mathematical reason-

ing”. A mitigation of the standard formula’s deficiencies could potentially be offered by

second pillar requirements. These requirements aim to improve insurers’ Enterprise Risk

Management and to this end require — in addition to the standard formula — stress

tests and scenario analyses.3 These approaches aim to extend the regulatory risk mea-

1For instance, the European Insurance and Occupational Pensions Authority (EIOPA) states in their
annual Insurance Statistics report regarding the own funds, cf. EIOPA (2019), that 2,470 of the 2,658
insurers evaluated base their risk calculations on the standard formula provided by Solvency II.

2Cf. BaFin (2016).
3For instance, Schlütter (2021) identifies deficiencies in the measurement of interest rate risk under

the Solvency II regulation and derives correlated scenarios to find an appropriate adjustment.
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surement “in order to provide an adequate basis for the assessment of the overall solvency

needs”, cf. EIOPA (2015), Guideline 7. Similarly, the requirements for the Own Risk and

Solvency Assessment (ORSA) of an insurer expect to “also take into account risks that

are not or not adequately included in the standard formula, and must develop a suitable

assessment procedure for them”, cf. BaFin (2016).

In general, stress scenarios are a tool to “help decision makers understand better the level

of resilience of the organization”, cf. Albrecher et al. (2018, Chapter 5.5). In the litera-

ture, there are several different suggestions on how to identify (reverse) stress scenarios

by stressing the underlying distribution of risk drivers: for example, Korn and Müller

(2021) apply the worst-case scenario in the setting of a portfolio optimization. Pesenti

et al. (2019) employ the Kullback-Leibler divergence measure, Makam et al. (2021) use

the χ2 divergence considering a discrete sample to derive stress scenarios. Breuer and

Csiszár (2013) suggest identifying stress scenarios by using a relative entropy measure to

ensure plausibility. However, they do not address the ORSA requirements explicitly to

quantify scenarios that are not captured by the standard formula. A different idea more

in line with the ORSA requirements is provided by McNeil and Smith (2012), proposing

the so-called “least solvent likely event” (LSLE), a deterministic scenario that allows for

a reliable evaluation of risk resulting from a given portfolio.4

This paper proposes a new approach to identify ORSA scenarios. We assume that the

insurer’s strategy can be expressed by an exposure vector u ∈ Rn. The entries of u can

represent, for example, investments in asset categories or sizes of the insurer’s lines of

business. Corresponding to strategy u, the function f true(u) provides the capital require-

ment which satisfies the safety level defined in pillar 1 (i.e. the 99.5% Value-at-Risk).

f true(u) can be considered as the outcome of a perfect internal model. Function fSF(u)

presents the capital requirement according to the standard formula. Our target is to

identify scenarios which approximate the residual

f true(u)− fSF(u) (1)

4Notably, McNeil and Smith (2012, Corollary 4.4) show that their suggestion coincides with the so-
called ”gradient scenario”, which is often also referred to as Euler allocation, cf. for instance Tasche
(2008).
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To this end, we consider gm(u) as the risk measurement of strategy u based onm scenarios.

If gm(u) approximates the residual in (1), then the standard formula in connection with

ORSA scenarios provides an approximation of the true risk:

f true(u) ≈ fSF(u) + gm(u) (2)

Our technical basis to derive scenarios for function gm(u) are so-called “orthogonal con-

vexity scenarios” (OCS) as proposed by Aigner and Schlütter (2022). The aim of OCS

is to translate the risk measurement of a portfolio into a small number of multivariate

realization vectors. In contrast to the aforementioned stress scenario literature, OCS

therefore do not change the risk distribution.By construction, OCS are orthogonal in

the sense of sensitivity-implied tail correlations, as proposed by Paulusch and Schlütter

(2022), and hence their use is not limited to elliptical distributions. Additionally, by

employing deterministic scenarios, a combination with the standard formula leads to a

deterministic risk measurement in the right–hand side of Eq. (2). We show that such a

combination with only a single OCS can then be set to reflect the outcome of the internal

model for the initial portfolio as well as all first-order derivatives. The approach thus

coincides with the well known Euler capital allocation.5 When additional scenarios are

taken into account, second-order derivatives are also reflected correctly. By approximat-

ing the internal model not only in a linear way, the scenarios reflect how portfolio-wide

diversification effects alter when the portfolio volumes are changed. Deriving scenarios

for a representative insurer could thereby provide a regulatory authority with a tool that

can be handed out to insurance companies as an addition to the standard formula.

Numerically, the suggestion is evaluated based on Gatzert and Martin (2012) and Eckert

et al. (2016) dealing with market risks. In the latter, the authors employ an internal

model which comprises the risks of three sub-modules, the outcome of which is consid-

ered as the true portfolio risk. A difference in risk capital between the internal model

and the standard formula is found, providing a good starting point for the scenario-based

extension of the regulatory approach.

This article contributes to the literature in three ways: Firstly, it highlights the short-

comings of a standardized approach to risk measurement. Secondly, a practical idea is

presented on how to formalize and implement the suggestions of the ORSA. Thirdly,

empirical indications are given as to what meaningful scenarios in the sense of the ORSA

5Cf. for instance Tasche (2008), Buch et al. (2011), or Guo et al. (2021).
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might look like for an example company.

The remainder of this article is structured as follows. section 2 presents the ideas of

Aigner and Schlütter (2022) for the determination of scenarios. Section 2 summarizes

the suggestion of Solvency II for the measurement of market risk as well as an internal

model counterpart given by Eckert et al. (2016) and Gatzert and Martin (2012). Sec-

tion 3 numerically evaluates the goodness of the suggested extension of the standard

formula. Section 4 provides concluding remarks about the concrete practical usefulness

of the proposed approach.

2 Orthogonal convexity scenarios for the ORSA

We suppose that a company’s risk can be specified by inspecting a random vector

X = (X1, ..., Xn)
T

with Xi modeling the losses (or gains in case of negative values) of the ith risk driver.

The Xi could be losses resulting from risks of the various submodules in the standard

formula, but they could also be defined at a more granular level. For example, in section

2, we will consider the Xi to reflect losses from single equity and bond investments. It

is further assumed that the insurer can change its portfolio by linearly scaling the Xi.

To this end, we introduce an exposure vector u ∈ Rn representing the portfolio volumes.

The true risk function can then be defined, in line with Solvency II, as

f true : Rn → R (3)

u 7→ ϱ(XTu)− E(XTu)

with ϱ being a risk measure. For the identification of scenarios later on, it is sufficient to

assume that ϱ is homogeneous of degree one and law-invariant. Paulusch (2017) ensures

that the common risk measure under Solvency II, the 99.5% Value-at-Risk, fulfills this

property. Notably, our method could also be applied in connection with the Expected

Shortfall, for example, cf. also Paulusch (2017). The function f true could then be derived

from a stochastic model or a “perfect” internal model.

4



Secondly, we will inspect the regulatory standard formula that measures the risk of port-

folio u in terms of

fSF : Rn → R, u 7→ fSF(u) (4)

which is explicitly specified in the ORSA, cf. EIOPA (2015).6 We assume that both

functions, f true(u) and fSF(u), are twice continuously differentiable in a neighborhood of

an initial portfolio uinitial. The central concern that we would like to tackle is that f true(u)

and fSF(u) may deviate, and we will thus inspect and approximate the residual

fdiff(u) = f true(u)− fSF(u) (5)

Here, situations that are not captured by the standard formula can be considered. In order

to approximate fdiff(u) relying on deterministic scenarios also taking into account tail

dependencies, the approach presented by Aigner and Schlütter (2022) will be used.7 The

authors suggest employing so-called “orthogonal convexity scenarios” (OCS) resulting in

a scenario-based risk-measurement function

gm : Rn → R (6)

u 7→

√√√√ m∑
i=1

(
(xOCS

i )
T
u
)2

with 1 ≤ m ≤ n a pre-specified number of scenarios that should be considered and xOCS
i ,

i = 1, . . . ,m, denoting the OCS.8 The latter are defined as

xOCS
i =

wT
i H√

2 · wT
i Hwi

(7)

with weightvectors w1, . . . , wm ∈ Rn andH the Hessian matrix of
(
fdiff

)2
.9 The weightvec-

tors have to be specified by the user of the method and are supposed to be selected or-

thogonally in the sense of the bilinearform

⟨wi, wj⟩H = wT
i Hwj (8)

6Although this paper focuses on the standard formula for insurance companies, the methodology
could also be adapted to other models which are to be compared to a benchmark model.

7There is some literature dealing with tail dependencies such as Mittnik (2014) and Paulusch and
Schlütter (2022).

8These scenarios can be understood as realizations of the risk vector X in Eq. (9).
9Appendix A.2 highlights how to calibrate the Hessian matrix.
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with H as before. Appendix A.3 provides some guidance on how to identify the necessary

weightvectors. Explicitly, it can be ensured that

xOCS
1 = ∇uf

diff (uinitial)

such that the first scenario coincides with the Euler allocation of fdiff. The OCS approach

can also be interpreted as an extension of the ”Least solvent likely event” (LSLE) intro-

duced by McNeil and Smith (2012) by including additional scenarios that can capture

the convexity of the approximated risk measurement.

By basing the identification of the scenarios on the Hessian matrix, the function gm is

capable of capturing non-linear dependencies and heavy tails in the portfolio as out-

lined by Paulusch and Schlütter (2022).10 When now approximating f true(u) by the sum

fSF(u) + gm(u), it fulfills the properties summarized in Proposition 1.

Proposition 1. Let 1 ≤ m ≤ n, f true(u) and fSF(u) as before and f true (uinitial) >

fSF (uinitial). Then, it holds:

1) f true (uinitial) = fSF(uinitial) + gm(uinitial)

2) For all v ∈ Rn, it is

∂

∂h
f true (uinitial + hv) |h=0=

∂

∂h

(
fSF (uinitial + hv) + gm (uinitial + hv)

)
|h=0

3) For v1, v2 ∈ span{w1, . . . , wm}, it is

∂2

∂h1∂h2

f true (uinitial + h1v1 + h2v2) |h1=h2=0=

=
∂2

∂h1∂h2

(
fSF (uinitial + h1v1 + h2v2) + gm (uinitial + h1v1 + h2v2)

)
|h1=h2=0

Therein, gm is as in Eq. (6) in connection with xOCS
i ’s as in (7).

The proof is presented in Appendix A.1. From Proposition 1, we see that an extension

of the standard formula adding risk resulting from OCS indeed allows an approximation

of the true risk measurement function in the sense of first and second order sensitivities.

To derive ORSA scenarios in the sense of section 2, we have to calibrate the two risk

10In the literature, it is often suggested to identify scenarios on the basis of the covariance matrix such
that the scenarios can be found through the application of Principal Component Analysis (PCA), cf. for
instance Hull (2018). Aigner and Schlütter (2022) highlight that relying on such a linear measure may
lead to a misinterpretation of the company’s risk situation.
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measurements based on the true risk which will be represented by an internal model

and the one based on the regulatory requirements. This is done in the following two

subsections. Specifically, we restrict the analysis to a market risk setting including equity,

interest rate and spread risk, and set up a specific portfolio.

2.1 Specification of f true

To meet the requirements of the regulatory authority in Europe, we employ as risk mea-

sure ϱ in (3) the VaR to a confidence level of 99.5% such that the true risk is given

by

f true : Rn → R

u 7→ VaR0.995

(
XTu

)
− E

(
XTu

)
with a random risk vector

X = (X1, . . . , Xn)
T (9)

consisting of n = nB + nS risk drivers comprising nB ∈ N bond and nS ∈ N stock invest-

ments. Without loss of generality, we assume that X1, . . . , XnB
reflect the losses/gains

resulting from bonds and XnB+1, . . . , XnB+nS
those from stock investments. For f true

to be well-defined, we then have to specify X. For notational reasons, we rewrite the

risk vector X =
(
XB, XS

)T
to represent losses/gains resulting from bonds and stocks

separately after one year. In order to determine these stochastic vectors

XB = (XB
1 , . . . , X

B
nB

)T

XS = (XS
1 , . . . , X

S
nS
)T

we follow Eckert et al. (2016), who suggest modeling stock investments in combination

with a reduced form credit risk model for defaultable bond exposure. Therefore, they let

the stochastic default intensity (hazard rate) h(t) follow a Vasicek (1977) process. The
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resulting model in Eckert et al. (2016) can be written as

dr(t) = κ · (θ − r(t)) dt+ ζdWr(t)

dh1(t) = χ1 · (o1 − h1(t)) dt+ Γ1dWh1(t)

. . .

dhnB
(t) = χnB

· (onB
− hnB

(t)) dt+ ΓnB
dWhnB

(t)

dS1(t) = µ1S1(t)dt+ σ1 · S1(t)dWS1(t)

. . .

dSnS
(t) = µnS

SnS
(t)dt+ σnS

· SnS
(t)dWSnS

(t)

whereW (t) =
(
Wr(t),Wh1(t), . . . ,WhnB

,WS1 , . . . ,WSnS

)T
is a standard Brownian motion

with a symmetric correlation matrix RIM implying that the valuation of market risk takes

into account interest rate risk, credit risk, equity risk as well as dependencies between

them.11 Herein, κ and χi define the speeds of mean reversion, θ and oi the long-term

means, and ζ and Γi the volatilities of the processes for i = 1, . . . , nB. Additionally, stock

investments are assumed to follow geometric Brownian motions.12 Here, there are closed

form solutions for the pricing of stock investments given by

Si(t) = Si(0) · exp
(
µSi

−
σ2
Si

2
· t+ σSi

·
√
tWSi

)
for i = nB+1, . . . , nB+nS, cf. for instance Gatzert and Martin (2012, Eq. (7)), modeling

the stock value at time t. Since we are interested in the stochastic losses of each stock

investment, we set (
XS
)
i
:= − (Si(1)− Si(0)) (10)

for i = 1, . . . , nS.
13 Notably, we will set Si(0) = 1 later on.

For the evaluation of bond investments, we have to take into account spread and interest

rate risk. As our model states, we assume the interest rate process to follow a Vasicek

(1977) process

dr(t) = κ · (θ − r(t)) dt+ ζdWr(t)

11For more details on the model, cf. Eckert et al. (2016).
12The selection of geometric Brownian motions for modeling stocks is quite common in the literature,

cf. for instance Islam and Nguyen (2020) or Graf and Korn (2020).
13In Eq. (10), negative values are reported such that positive values represent losses later on.
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allowing us to determine the price of a non-defaultable zero coupon bond with maturity

T as14

P (t, T ) = exp(−Mr(t, T ) + 0.5 · V 2
r (t, T )), with

Mr(t, T ) = r(t) · 1− exp(−κ · (T − t))

κ
+ θ ·

(
(T − t)− 1− exp(−κ · (T − t))

κ

)
V 2
r (t, T ) =

ζ2

κ2

(
(T − t)− 2 · 1− exp(−κ(T − t))

κ
+

1− exp(−2κ(T − t))

2κ

)
Furthermore, in line with Eckert et al. (2016) we follow Duffie and Singleton (1999) to

account for credit risk in the valuation of defaultable bonds. Therefore, default events

for a given bond i are modeled by a Cox process with a stochastic hazard rate hi(t).

Moreover, the model of Duffie and Singleton (1999) allows us to take into account de-

pendencies between credit spread and interest rate by using correlated Brownian motions

Wr(t),Whi
(t), i = 1, . . . , nB. Additionally, a recovery of the market value is assumed

such that in the case of a default at time τ , each bond pays a fraction of its value before

the default

δR(τ) · PRMV (τ−, T )

with δR(t) denoting the recovery rate,
15 PRMV (t−, T ) = lims↗τ P

RMV (s, T ) and PRMV (t, T )

the pre-default price at time t < τ of a recovery of market value (RMV) defaultable bond

with maturity T . Then, the price of a defaultable bond is

PRMV (t, T ) = EQ
(
exp

(
−
∫ T

t

(r(u) + si(u)) du

))
with the credit spread si(t) = (1 + δR(t)) · hi(t). Since the hazard rates are assumed to

follow a Vasicek (1977) process, the spread risks si(t) follow —according to Itô’s Lemma—

again a Vasicek (1977) process given by

dsi(t) = χi · (ôi − si(t))dt+ Γ̂idWhj

14These formulas are presented for example in Eckert et al. (2016) and Schönbucher (2003).
15In general, the recovery rate could be stochastic, but for simplicity, we assume a constant recovery

rate later on.

9



with ôi = (1− δR) · oi, Γ̂i = (1 − δR)Γi and a constant recovery rate δR(t) = δR. Then,

Eckert et al. (2016) provide the following closed form solutions for the price of a RMV

defaultable bond as

PRMV
i (t, T ) = P (t, T ) exp

(
−Msi(t, T ) + 0.5 · V 2

si
+ Ci(t, T )

)
, with

Msi(t, T ) = si(t) ·
1− exp(−χi(T − t))

χi

+ ôi ·
(
(T − t)− 1− exp(−χi(T − t))

χi

)
V 2
si
(t, T ) =

Γ̂2
i

χ2
i

(
(T − t)− 2 · 1− exp(−χi(T − t))

χi

+
1− exp(−2χi(T − t))

2χi

)
, and

Ci(t, T ) = ρr,hi

ζΓ̂i

κχi

(
(T − t)− 1− exp(−κ(T − t))

κ
− 1− exp(−χ(T − t))

χi

+
1− exp(−(κ+ χi))(T − t)

κ+ χi

)
where ρr,hi

reflects the correlation of the standard Brownian motions Wr(t) and Whi
(t).

The price of a defaultable bond i with hazard rate hi and maturity Ti at time t is then

derived as

Bi(t) =

Ti∑
h=t+1

CFi(h) · PRMV
i (t, h)

with cash flows

CFi(t) =



ci(t) · FVi, if (t < Ti) ∧
(
τBi > t

)
(1 + ci(t)) · FVi, if (t = Ti) ∧

(
τBi > t

)
δR ·Bi(t− 1), if t = τBi

0, else

(11)

depending on the time of default τBi , coupon ci(t) and time t. Herein, the face values

FVi are scaled such that Bi(0) = 1 for all i = 1, . . . , nB. Since we are again interested in

potential losses/gains after one year, we set(
XB
)
i
= −(Bi(1)−Bi(0)) (12)

with i = 1, . . . , nB. In case of a mixed portfolio consisting of stocks and bonds, the

market value risk vector is then

X =
(
(XB)T, (XS)T

)T
with XB and XS as in (12) and (10) respectively. Here, the risk measure function in (3)

is well-defined. By selecting the face value as in (11), the cash flows are adjusted in a
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way that ensures that
(
XTu

)
i
represents a loss with a value of ui at t = 0. The portfolio

volumes can be steered by adjusting the ui.

2.2 Specification of fSF

The Solvency II framework suggests a module structure making it necessary to calculate

equity, interest rate and spread risks separately on a sub-module basis, cf. Figure 1. The

risks are then aggregated towards the market module by the so-called square-root formula

denoted by fSF. In particular, we calculate three different values: Mkteq, Mktint and

Figure 1: Structure for the SCR calculation in the style of Gatzert and Martin (2012);
only sub-modules that are taken into account later on are presented.

Mktsp representing the capital requirement of the sub-modules respectively. Liquidity,

concentration, property and currency risk will be excluded in the following analysis for

the sake of simplicity. In this section, we mainly adopt the notation of Gatzert and Martin

(2012). For notational reasons, we set the exposure vector as u =
((

uB
)T

,
(
uS
)T)T ∈ Rn

with

uB = (uB
1 , . . . , u

B
nb
)T ∈ RnB

uS = (uS
1 , . . . , u

S
ns
)T ∈ RnS

distinguishing between exposures referring to bond investments, uB ∈ RnB , and those

referring to stocks, uS ∈ RnS .
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2.2.1 Interest rate risk

First, the risk resulting from a change of the term structure is determined within the

interest rate risk sub-module. For this purpose, we calculate the present value (PV) of

all interest-rate-sensitive exposures—namely uB—by discounting their cash flows (CF)

using the risk-free interest rate structure rf (t) which is published monthly by EIOPA, cf.

Table 7. Specifically, we have to calculate for i = 1, . . . , nB

PV int
i =

Ti∑
t=1

CF i(t)

(1 + rf (t))
t (13)

with Ti the maturity and CF i(t) the cash flow of investment i at time t. For face values

FVi as discussed in the section before and a coupon payment ci(t) at time t, the cash

flow for bond i is given by

CF i(t) =

ci(t) · FVi, if t < Ti

(1 + ci(t)) · FVi, if t = Ti

(14)

for i = 1, . . . , nB. The upward shocked present values are then calculated as

(
PV int

up

)
i
=

Ti∑
t=1

CF i(t)

(1 + max (rf (t) · (1 + sup(t)) , 0.01))t
(15)

where the maximum in the denominator is in line with European Commission (2015,

Article 166) and ensures that there is at least a shock of one percent. Furthermore, for

the downward shock we calculate(
PV int

down

)
i
=

Ti∑
t=1

CF i(t)

(1 + max (rf (t) · (1 + sdown(t), 0)))t
(16)

with the maximum in the denominator accounting for the current low-level interest rate

environment. In both cases, it is again i = 1, . . . , nB. The shocks sup(t), sdown(t) are

provided by European Commission (2015, Article 166 and 167) and shown in Table 7.

Interpreting the results in Eq. (13), (15) and (16) as vectors in RnB , allows us to determine

the overall risk of the sub-module interest rate as

Mktint(u
B) = max

((
PV int − PV up

int

)T
uB,

(
PVint − PV down

int

)T
uB
)

depending on the part of the exposure vector reflecting bond investments.
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2.2.2 Spread risk

Changes in the credit spread on exposures are considered in the rating-based risk sub-

module of the Solvency II standard approach. The risk consists of three uncorrelated

groups: the SCR of bonds Mktbondssp , of securization positions Mktsecurizationsp and of credit

derivatives Mktcdsp which are then easily added up to the total risk of the sub-module

spread

Mktsp = Mktbondssp +Mktsecurizationsp +Mktcdsp

For simplicity, we will restrict our analysis only to bond assets, ignoring securization

positions and credit derivatives. The SCR calculation for spread risk then takes into

account the current value MVsp,i(0) = uB
i of bond i = 1, . . . , nB. The stress referring

to each bond depends on shocks that can be specified by including their ratings, which

are publicly available, and their durations. In order to determine the latter, we rely on

the Macaulay (1938) duration with a floor of one, as suggested by European Commission

(2015, Article 176). Given that there is only one coupon period per year, it can be

determined as

durationi = min

(∑T
t=1 t · CF i(t) · (1 + rf (t))

−t∑T
t=1 CF i(t) · (1 + rf (t))

−t
· 1

1 + rY tM

, 1

)
for i = 1, . . . , nB with rf and CF i(t) the cash flow as before. Furthermore, we need to

specify the yield to maturity rY tM which is obtained by solving

PV int
i =

Ti∑
t=1

CF i(t) · (1 + rY tM)−t

where PV int
i is calculated as in (13) and Ti as before.

16 Given the rating and the duration

of each bond, European Commission (2015, Article 176) further outlines how to specify

the stresses stressi for i = 1, . . . , nB explicitly, cf. Tables 8 and 9. Here, the SCR of the

spread risk sub-module (in the simplified version only including bonds) is calculated as

Mktsp
(
uB
)
= max

(
nB∑
i=1

uB
i · stressi, 0

)
= max

(
stressTuB, 0

)
16For the numerical calculation, there are several common approaches, such as the Newton-Raphson

method which we will employ later on.
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It should be noted that for bonds issued by governments belonging to the EEA or the

OECD, the stress, according to BaFin (2016), is always zero percent, and hence theMktsp

is also zero when the exposure is a respective bond.

2.2.3 Equity risk

In order to calculate the capital requirements resulting from equity risk, we first have to

cluster the nS stock assets within our portfolio in (9) into “global” and “other”. The

class “global” comprises all exposures transacted in countries that are members of the

European Economic Area (EEA) or the Organisation for Economic Co-operation and

Development (OECD), cf. CEIOPS (2010) and European Commission (2015). Without

loss of generality, we assume that the first kglobal ∈ N entries of u represent the exposure to

“global” investments and the rest kother = nS−kglobal the exposure to “other” investments.

“Global” stocks are easily multiplied with shockglobal = 0.3 and “other” investments are

assumed to have a higher risk and therefore are assigned a shock of shockother = 0.4.17

With these specifications, one can directly calculate the market values of both classes by

summing up the market values at time t = 0, denoted byMVeq,i(0) = uS
i , i = 1, . . . , nS for

all assets in the respective class and multiplying it with the respective shock parameter

Mkteq, global(u
S) = max

0.3 ·
kglobal∑
i=1

uS
i , 0


Mkteq, other(u

S) = max

0.4 ·
nS∑

i=kglobal+1

uS
i , 0


with kglobal+kother = nS.

18 In order to aggregate the classes with respect to diversification

effects, EIOPA (2011) recommends the aggregation via the square-root formula

Mkteq(u
S) =

√
xTReqx

17The stresses are adjusted here to avoid pro-cyclical effects of adverse capital market developments,
cf. Gatzert and Martin (2012) for more details.

18For further details on the specification of the shocks including strategic participation, adjustments
etc. cf. Gatzert and Martin (2012). These are excluded in this paper for the sake of tractability, but the
process in the simulation study later on would work equivalently.
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with x =
(
Mkteq,global

(
uS
)
,Mkteq,other

(
uS
))T

and the correlation matrix

Req =

Global Other( )
1 0.75 Global

0.75 1 Other

Notably, a portfolio only consisting of stocks is just exhibited to the equity sub-module,

and the solvency capital requirement (SCR) calculation of the market risk module ends

with this sub-module, cf. Figure 1.

2.2.4 Aggregation of the sub-modules

Following European Commission (2015), the three sub-modules, equity, interest rate and

spread are assumed to be correlated by

RSF =

Interest rate Equity Spread


1 A A Interest rate

A 1 0.75 Equity

A 0.75 1 Spread

where the correlation parameter A is conditional on the result of Mktint as

A =

0.5, if Mktint(u
B) =

(
PVint − PV down

int

)T
uB

0, if Mktint(u
B) = (PVint − PV up

int)
T uB

Then, the overall market risk of a portfolio u ∈ NnS+nB can be calculated with a square-

root formula resulting in a specification of the function in (4) as

fSF : Rn → R (17)

u 7→
√

xTRSFx
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with x =
(
Mktint(u

B),Mkteq(u
S),Mktsp(u

B)
)T ∈ Rn and n = nB + nS. It is shown in

Appendix A.5 that fSF is indeed homogeneous of degree one, a necessary property for

the application of OCS in the latter.

2.3 Portfolio set-up

Let us now construct a (theoretical) portfolio, the market risk of which will be determined

on the basis of the approaches presented in the last two sections. We assume an investment

portfolio consisting of nB = 5 bond investments, cf. Table 1, and nS = 2 stocks, cf. Table

2. Furthermore, we assume that we are equally invested in each of those positions such

that we set the initial portfolio as uinitial = 17 – with u1, . . . , u5 presenting the bond and

u6, u7 the stock investments.19 Since there is a strict distinction between spread and

default risk in the regulatory requirements, we assume that none of the bonds default

until their maturity. We exclude default risk in the internal model here, such that

the numerical analysis is indeed in line with the solvency calculation of the market risk

module.

The SCR based on the standard formula can now directly be derived on the basis of the

given specifications. Notably, the spread risk for the governmental bonds is set to zero,

since Germany and Spain are both part of the EEA.

For the internal model, we take into account correlated standard Wiener processes with

Bi Typei ratingi maturityi Coupon (in %) ci χi oi Γi

1 Corporate AA 16 8.00 0.0392 0.0269 0.0004
2 Corporate A 12 2.95 0.0180 0.0240 0.0009
3 Corporate BBB 11 5.75 0.0373 0.0453 0.0027
4 Government BB 10 1.75 0.2201 0.5670 0.2299
5 Government A 10 0.50 0.0139 -0.0070 0.0022

Table 1: Specifications of the bonds that are taken into account. B1: Deutsche Bank
AG, B2: Commerzbank AG, B3: E.ON SE, B4: Greece and B5: Spain. The parameters
χi, oi and Γi refer to the Vasicek processes and are estimated on the basis of spread data
between 09/2011 and 09/2021.

the correlation matrix RIM as discussed in section 2.1. The entries of RIM have been

estimated relying on monthly data between 09/2011 and 09/2021 and are presented in

19The choice of the initial portfolio is arbitrary thanks to homogeneity of f true and fSF as long as
f true(uinitial) > fSF(uinitial).
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Table 3. The stocks are then modeled by Monte Carlo simulations with 5,000,000 paths

following geometric Brownian motions with the parameters as in Table 2. Here, S1,

namely Euro Stoxx, represents the investment in a “global” asset and S2, Shanghai Stock

Exchange (SSE) composite index, in an “other” asset. Both potential classes in the equity

risk sub-module are thus covered.

The interest rate is modeled on the basis of a Vasicek (1977) process with a long–term

Si Indexi categoryi µi σi

1 Euro Stoxx Global 0.0750 0.1611
2 Shanghai SE composite index Other 0.0632 0.2091

Table 2: Annualized parameters for the specification of the geometric Brownian mo-
tions representing stock investments. The values are estimated on monthly data between
09/2011 and 09/2021.

mean θ = −0.0225, the speed of mean reversion of κ = 0.0046 and a drift of σ = 0.0015.

The parameters have been estimated on the basis of monthly EURIBOR data between

09/2011 and 09/2021 and relying on Maximum Likelihood estimation, cf. for instance

Fergusson and Platen (2015). Furthermore, the initial value is set to r(0) = θ.

As possible bond investments, a mixture of corporate and government bonds is considered.

Their specifications are presented in Table 1. Employing again Maximum Likelihood

estimation, the hazard processes can be fitted with the parameters presented in Table 1.

Additionally, the recovery rate is set constant to δR = 0.61.20

With these specifications, we can now define

r h1 h2 h3 h4 h5 S1 S2

r 1
h1 0.1864 1
h2 0.1025 0.4518 1
h3 0.0848 0.2443 0.3165 1
h4 -0.0186 0.0310 -0.0846 -0.0147 1
h5 0.1617 0.4263 0.6409 0.5236 -0.0832 1
S1 -0.0865 -0.0213 0.0916 -0.2930 -0.0095 -0.1998 1
S2 -0.2118 0.0629 -0.1576 -0.1366 0.0789 -0.1818 0.3365 1

Table 3: The entries of correlation matrix RIM . The values represent the correlation
between stocks, bonds and interest rate r based on monthly data from 09/2011 to 09/2021.

20Eckert et al. (2016) note a high sensitivity of the model to changes of δR, but for our purpose a
change in the recovery rate would lead to similar results.
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fdiff(u) = f true(u)− fSF(u)

We can now identify OCS as in Eq. (7) such that gm(u) as in Eq. (6) approximates fdiff.

To this end, Appendix A.2 and Appendix A.3 provide the necessary technical details

specifying the Hessian matrix H of
(
fdiff

)2
and the weightvectors wi, i = 1, . . . ,m, which

are crucial for the definition.

3 Results

Let us put ourselves in the situation of an investor who has seven units to invest in the

portfolio specified in section 2.3. Table 4 shows what the risk capital looks like when

investing all units separately in each asset and when investing in an equally weighted

portfolio uinitial = 17. We observe that there is a severe gap between the two approaches

u fSF(u) f true(u) Relative difference
(7, 0, 0, 0, 0, 0, 0)T 0.933 0.931 0.21%
(0, 7, 0, 0, 0, 0, 0)T 1.008 0.848 18.87%
(0, 0, 7, 0, 0, 0, 0)T 1.469 0.806 82.26%
(0, 0, 0, 7, 0, 0, 0)T 3.367 6.697 −49.72%
(0, 0, 0, 0, 7, 0, 0)T 0.602 0.887 −32.13%
(0, 0, 0, 0, 0, 7, 0)T 2.1 2.626 −20.03%
(0, 0, 0, 0, 0, 0, 7)T 2.8 3.198 −12.45%

uinitial 1.300 1.478 −12.04%

Table 4: The SCRs based on f true investing seven units separately in each of the seven
assets and in an equally weighted portfolio are presented.

when investing in assets separately. And even including diversification effects, we observe

a severe underestimation of the true risk by

fSF (uinitial)

f true (uinitial)
− 1 =

1.300

1.478
− 1 = −12.04%

Such an underestimation may lead to a capital buffer too low to cover investment risks,

as outlined for instance by Asadi and Al Janabi (2020).

Inspecting a common tool of capital allocation, the Euler allocation, of both measure-

ments at uinitial, cf. Table 5, also provides evidence that there is a severe gap between

the two approaches. Notably, the entries of the gradient add up to the capital require-

ment for uinitial in both cases, cf. Tasche (2008). We can thus conclude that changing
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i ∇uf
SF
i ∇uf

true
i Relative difference

1 0.126 0.068 85.29%
2 0.136 0.062 122.95%
3 0.190 0.058 229.34%
4 0.316 0.756 −58.20%
5 0.056 0.064 −11.11%
6 0.201 0.203 −1.96%
7 0.277 0.267 3.74%∑

1.300 1.478 −12.04%

Table 5: Euler allocations of f true and fSF and their relative difference. ∇u represents
the gradient.

diversification effects are not captured when basing risk measurement on the square-root

formula, since the slope of the two functions in uinitial strongly differ. This observation

is in line with Chen et al. (2019), who find empirical evidence that the standard formula

does not reflect changing diversification effects correctly.

To approximate then the difference fdiff(u) = f true(u) − fSF(u) the OCS provided in

Table 6 are determined as suggested in section 2 such that we obtain an approximation

fSF(u) + gm(u) of f
true(u) in the sense of Proposition 1.21 In a first step, we use only a

i Asseti xOCS
1i

xOCS
2i

xOCS
3i

xOCS
4i

xOCS
5i

xOCS
6i

xOCS
7i

1 B1 -0.057 -0.001 0.027 -0.034 0.013 0.012 0.004
2 B2 -0.075 -0.001 0.026 -0.031 0.011 0.008 0.002
3 B3 -0.130 0.002 0.044 -0.016 -0.011 -0.008 -0.002
4 B4 0.440 -0.002 -0.020 0.113 -0.088 -0.003 -0.016
5 B5 0.006 -0.002 -0.004 -0.048 0.040 -0.006 0.004
6 S1 0.005 0.071 -0.038 0.007 0.006 -0.005 0.071
7 S2 -0.011 -0.069 -0.034 0.008 0.029 0.002 -0.063

Table 6: Orthogonal convexity scenarios for the definition of the approximation function
gm(u) as in section 2.

single scenario. That scenario xOCS
1 mainly reflects losses in bond investment B4 and is

equal to the Euler allocation of fdiff such that

7∑
i=1

xOCS
1i

= 0.178 = fdiff(uinitial) = f true(uinitial)− fSF(uinitial)

21Notably, for the determination it has been set w1 = uinitial, w2 = (0, 0, 0, 0, 0, 1,−1)T and w3 =
(0.2, 0.2, 0.2, 0.2, 0.2, 0.5,−0.5)T since those are the business decisions we want to evaluate later on.
Appendix A.3 sketches how Aigner and Schlütter (2022) select the OCS without pre-given decisions
considered as well, and the following calculations could be conducted in the same way.
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Including this additional scenario comes with two advantages: Firstly, we ensure that the

risk resulting from the initial portfolio uinitial is estimated precisely. Secondly, first order

sensitivities of the true risk are met by our approximation. Employing further scenarios

then allows us to fit a quadratic approximation of f true in uinitial even allowing us to meet

second order sensitivities of the true risk landscape.

For illustration, let us numerically evaluate the goodness of the approximation. Therefore,

we shift the portfolio in the direction

unew(h) = uinitial + h · (0, 0, 0, 0, 0, 1,−1)T (18)

for h ∈ R. This new portfolio represents a shift between stock investments keeping the

exposure to the five bond investments constant. For positive values of h, we shift our

portfolio from the “other” investment, S2, in the direction of the “global” one, S1. For

negative h the shift is opposite, from “global” to “other”.

The resulting SCRs based on the different approaches are presented in Figure 2 for

h ∈ [−1, 1]. There, we see that the overall capital requirement according to the standard

formula (red curve) always underestimates the true risk (black curve). Furthermore, we

see that it strictly decreases when shifting the portfolio away from S2 in the direction of

S1, which is reflected by the consistently negative slope. However, the true risk actually

increases if the portfolio is shifted “too far” away from S2 (positive h) due to changing

diversification effects that are not captured by the standard formula. Generally, we can

say that first and second order sensitivities in uinitial = 17 (for h = 0) are not reflected

correctly.

By extending the standard formula with only m = 1 OCS (orange curve), we can adjust

the risk measurement function in a sense that the true risk in uinitial is reflected correctly

and that even first order sensitivities of f true in all directions are met. The latter is due

to the selection of the Euler allocation of fdiff as first scenario. Such an extension is a

good starting point, but also does not take into account changing diversification effects,

since it still has a consistently negative slope in line with the standard formula.

Including m = 2 scenarios (blue curve) allows a fit with a quadratic approximation

function that also overcomes this second problem. We observe that now—additional to

the properties of the extension with one scenario—even second order sensitivities are met

in a neighbourhood of uinitial. We thus obtain a risk measurement function that is also
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capable of evaluating non-marginal portfolio shifts.

In order to inspect the goodness of the extension more granularly, let us inspect a more

Figure 2: SCRs on the basis of the different risk measurement functions evaluating unew(h)
as in Eq. (18).

complex shift impacting all portfolio positions simultaneously

unew(h1, h2) = uinitial + h1 ·
(
1

5
,
1

5
,
1

5
,
1

5
,
1

5
,−1

2
,−1

2

)T

+ h2 · (0, 0, 0, 0, 0, 1,−1)T (19)

for h1, h2 ∈ R. If we set there h1 = 0, we would again inspect a portfolio shift in

the sense of Eq. (18). Setting h2 = 0 would then reflect a shift away from stock into

bond investments for positive h and vice versa for negative ones. Notably, the directions

have been chosen such that the overall investment sum does not change. Comparing

the resulting SCRs on the basis of OCS leads to the results presented in Figure 3 for

h1, h2 ∈ [−1, 1].

There, the left part shows the relative error of the standard formula extended by m =

1 scenario. It should be noted that we thereby obtain a reasonable approximation of

f true if we only evaluate marginal portfolio changes. When h2 is de-/increased too far,

the underlying curvature of the true risk measurement function cannot be reflected any

more. That misestimation is represented by the relative errors of fSF(unew(h1, h2)) +

g1(unew(h1, h2)) (red parts in the figure).
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By including a second scenario, we are still able to approximate the true risk in a

Figure 3: Relative errors measuring risks of portfolios unew(h1, h2) as in (19) on the basis
of the standard formula and its extension via orthogonal scenarios for m = 1, 2 and 3
scenarios. All results are compared to f true (unew (h1, h2)).

neighborhood of uinitial, but changing diversification effects are also considered. In the

middle part of Figure 3, we observe that the gray parts—reflecting a relative error of

about 0%—are not linear any more, but are instead spread in all directions. At the same

time, we have to accept that a slight overestimation of the true risk may occur (blue

parts), which is due to the fact that we extend the standard formula by a strictly positive

function g. Numerically, including a second and third scenario reduces the absolute

amount of the relative error from 5.86% (left) to 3.39% (middle). Notably, the inclusion

of the third scenario (right part) does not have a great impact on the maximal relative

error (3.00%), but indeed the neighbourhoodregion in which the approximation meets the

true risk (gray parts in the right) can be widened. The inclusion of even more scenarios

here also seems reasonable.
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4 Conclusion

This paper suggests “orthogonal convexity scenarios” (OCS) to address the requirement

for the Own Risk and Solvency Assessment (ORSA) of an insurer employing scenario

analyses. Explicitly, it is expected to ”also take into account risks that are not or not

adequately included in the standard formula, and [...] develop a suitable assessment

procedure for them” (BaFin (2016)). We show that the OCS allow the derivation of a

deterministic extension of the standard formula such that the overall risk is in line with

the true portfolio risk. The approach is applied in the context of market risks comprising

interest rate, spread and equity risks. For the set-up of the standard formula, we follow

the regulatory requirements and the the approaches from the literature. Additionally,

we use an internal model which is supposed to represent the true risk resulting from

an asset portfolio. Notably, the true risk is generally unknown in practice, at which

point an approximation becomes necessary. We find that extending the standard formula

by OCS provides a reasonable approximation of the true risk in the sense of first and

second order sensitivities. The latter property allows the evaluation of even non-marginal

portfolio shifts, since changing diversification effects are considered by the resulting risk

measurement. Although the approximation is only local, the examples in Paulusch and

Schlütter (2022) indicate that the methodology is useful for other portfolios in addition

to the calibration portfolio. The suggested approach can thus be seen as an answer to the

question of how to select scenarios in the ORSA to measure risks that are not captured by

the standard formula. Notably, since only deterministic scenarios are taken into account,

we provide an easy tool for communicating the difference between an internal model

and the standard formula to decision-makers, which has been identified as one of the

fundamental aims of stress scenarios, cf. Albrecher et al. (2018, Chapter 5.5).
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A Appendix

A.1 Proof of Proposition 1

Let uinitial be arbitrary and assume f true(uinitial) > fSF(uinitial). Furthermore, assume that

f true and fSF are homogeneous of degree one and twice continuously differentiable in

uinitial. Then

fdiff(u) := f true(u)− fSF(u)

directly fulfills these properties as well. According to Aigner and Schlütter (2022, Theo-

rem 1) it then holds for the approximation function g as specified in section 2

fdiff (uinitial) = gm (uinitial)

∂

∂h
fdiff (uinitial + hv) |h=0 =

∂

∂h
(gm (uinitial + hv) |h=0)

∂2

∂h1∂h2

fdiff (uinitial + h1v1 + h2v2) |h1=h2=0 =
∂2

∂h1∂h2

gm (uinitial + h1v1 + h2v2) |h1=h2=0

for all v ∈ Rn and v1, v2 ∈ span{w1, . . . , wm}. Thereby, Proposition 1 follows.

A.2 Estimation of the Hessian matrix

For the identification of OCS in Eq. (7), we have to estimate the Hessian matrix of(
fdiff

)2
. Employing the chain rule leads to

H = 2 ·
(
Hf true −HfSF

)
·
(
fdiff (uinitial)

)
+ 2 ·

(
∇uf

diff (uinitial)
)T · ∇uf

diff (uinitial) (20)

with Hf true and HfSF the Hessian matrices of fSF and f true respectively, and ∇uf
diff the

gradient of fdiff all evaluated at uinitial. Furthermore, the gradient simplifies to

∇uf
diff (uinitial) = ∇uf

true (uinitial)−∇uf
SF (uinitial)

It is then necessary to estimate the single parts of Eq. (20). On the one hand, HfSF and

∇uf
SF (uinitial) can be determined easily by numerical derivation providing a reasonable

result, since fSF is deterministic. The identification of Hf true and ∇uf
true (uinitial), on the

other hand, is more challenging. Monte Carlo simulations can be applied in line with

Gourieroux et al. (2000) and Tasche (2009) who suggest Kernel estimators leading to a

consistent estimation of Hf true and ∇uf
true (uinitial). Thanks to Slutsky’s Theorem, (cf.
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Casella and Berger, 2002, p. 239 f.), we can then consistently estimate H in (20), since

it is a composition of consistent estimations.

A.3 Selection of weightvectors

For the identification of the necessary weightvectors w1, . . . , wm in Eq. (7), the user

of the methodology could follow Appendix B in Aigner and Schlütter (2022) and set

w1 = uinitial. For the identification of w2, . . . , wm, the authors define a matrix M ∈ Rn×ñ

with ñ = rank(H), such that

(Mv)T ·H · (Mv) = 0

for all v ∈ Rñ−m and the columns of M denoted as Mi also fulfill (Mi)
THMj = 0, for

i ̸= j. Further, they define the diagonal matrix Λ = MTHM and denote by Λ−0.5 the

diagonal matrix with entries λ−0.5
1 , . . . , λ−0.5

ñ−m. The weightvectors can then be determined

as

wm+1 =
1√

sTΛ−0.5MTMΛ−0.5s
·MΛ−0.5s

where s is the eigenvector of Λ−0.5MTMΛ−0.5 which refers to the smallest eigenvalue.
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A.4 Parameters for regulatory capital requirement

t Risk-free interest rate rf (t) Relative change sup(t) Relative change sdown(t)
1 -0.00612 0.7 -0.75
2 -0.00594 0.7 -0.65
3 -0.00556 0.64 -0.56
4 -0.00513 0.59 -0.5
5 -0.00462 0.55 -0.46
6 -0.00353 0.52 -0.42
7 -0.00293 0.49 -0.39
8 -0.00232 0.47 -0.36
9 -0.00172 0.44 -0.33
10 -0.00114 0.43 -0.31
. . . . . . . . . . . .

Table 7: Risk-free interest rate rf structure provided by EIOPA. The data are from
08/2021. Additionally, upward and downward shocks for the interest rate module are
presented, cf. European Commission (2015).

Duration (duri) in years stressi
duri ≤ 5 3% · duri
5 < duri ≤ 10 15% + 1.7% · (duri − 5)
10 < duri ≤ 20 23.5% + 1.2% · (duri − 10)
duri > 20 min (35% + 0.5% · (duri − 20), 1)

Table 8: Parameters for the determination of stressi within the spread sub-module under
Solvency II regulation for bonds unrated by nominated ECAI are reported.
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A.5 Homogeneity of degree one of fSF

We need to show that fSF in (17) is homogeneous of degree one. Therefore, we let every

figure as in section 2.2. We can calculate forλ ∈ R and u =
((

uB
)T

,
(
uS
)T)T ∈ Rn as in

section 2.2

fSF(λ · u) = fSF(λ ·
((

uB
)T

,
(
uS
)T)

=
√

xT
λRSFxλ

(∗)
=
√
(λ · x)TRSF (λ · x)

= λ ·
√
xTRSFx = λ · fSF(u)

with

xλ =
(
Mktint

(
λ · uB

)
,Mkteq

(
λ · uS

)
,Mktsp

(
λ · uB

))T
x =

(
Mktint

(
uB
)
,Mkteq

(
uS
)
,Mktsp

(
uB
))T

The equality (∗) holds if and only if Mktint, Mkteq and Mktsp are also homogeneous of

degree one. Firstly, it is

Mktint
(
λ · uB

)
= max

((
PV int − PV up

int

)T (
λ · uB

)
,
(
PVint − PV down

int

)T (
λ · uB

))
= λ ·max

((
PV int − PV up

int

)T
uB,

(
PVint − PV down

int

)T
uB
)
= λMktint

(
uB
)

Secondly, it holds

Mkteq
(
λ · uS

)
=
√

x̃T
λReqx̃λ

(∗∗)
=

√
(λ · x̃)T Req (λ · x̃) = λ ·Mkteq

(
uS
)

for x̃λ =
(
Mkteq,global

(
λ · uS

)
,Mkteq,other

(
λ · uS

))T
and

x̃ =
(
Mkteq,global

(
uS
)
,Mkteq,other

(
uS
))T

. To see (∗∗), we have to observe that

Mkteq, global

(
λ · uS

)
= max

0.3 · λ ·
kglobal∑
i=1

uS
i , 0

 = λMkteq, global

(
uS
)

Mkteq, other

(
λ · uS

)
= max

0.4 · λ ·
nS∑

i=kglobal+1

uS
i , 0

 = λ ·Mkteq, other

(
uS
)

Thirdly, we can calculate

Mktsp
(
λ · uB

)
= max

(
stressT

(
λ · uB

i

)
, 0
)
= λ ·max

(
stressTuB, 0

)
= λ ·Mktsp

(
λ · uB

)
fSF thus is homogeneous of degree one.
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A.6 Robustness check

In order to check the robustness of the presented approach to changes in the underlying

f true, the portfolio set-up is to be changed to coincide with the parameters presented in

Eckert et al. (2016) and Gatzert and Martin (2012). On this basis, we can also consider

an investment portfolio consisting of nB = 5 bond investments, cf. Table 10, that are in

line with Eckert et al. (2016) and nS = 2 stocks, cf. Table 11. Here, the SCR employing

the standard formula can be directly calculated. For the internal model, we again take

Bi Typei ratingi maturityi Coupon (in %) ci
1 Corporate AA 10 2.950
2 Corporate A 10 4.550
3 Corporate BBB 11 3.500
4 Government A 15 3.000
5 Government BB 11 5.125

Table 10: Specifications of the bonds that are taken into account. The parameters
are taken from Eckert et al. (2016). B1: Colgate-Palmolive Company, B2: Woolworth
LTD, B3: Areva SA, B4: Poland Republic of (Government) and B5: Turkey Republic of
(Government).

into account correlated standard Wiener processes with correlation matrix RIM as dis-

cussed in section 2.1. The entries of RIM are presented in Table 12 and are again taken

from Eckert et al. (2016). The stocks are then modeled as before following geometric

Brownian motions with the parameters as in Table 11. Here, S1, namely MSCI World,

represents the investment in a “global” asset and S2, India BSE 100, in an “other” asset.

Again, we cover both potential classes in the equity risk sub-module. The parameters

Si Indexi ratingi µi σi

1 MSCI World Global 0.0509 0.1574
2 India BSE 100 Other 0.1043 0.3309

Table 11: The parameters for the specification of the geometric Brownian motions repre-
senting stock investments. The numbers are taken from Gatzert and Martin (2012) who
estimated them based on monthly data from 01/1988 to 07/2011.

of the interest rate Vasicek (1977) process are given by κ = 0.0953, θ = 0.0437 and

ζ = 0.0069, cf. Eckert et al. (2016).22 Furthermore, the initial value is set to r(0) = θ.

22These are based on the monthly “EURIBOR” data from 01/1999 to 12/2008.
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The specifications of bond investments are presented in Table 10. Eckert et al. (2016)

follow then Liang et al. (2011), assuming that bonds in the same rating class have the

same parameters for their hazard rate Vasicek (1977) process which are shown in Table

13. Additionally, the recovery rate is set constant to δR = 0.61 as before.

We evaluate the goodness of the approximation of f true(u) by fSF(u) + gm(u) as sug-

i r hAA hA hBBB hBB S1 S2

r 1
hAA 0.3 1
hA 0.3 0.3 1
hBBB 0.3 0.3 0.3 1
hBB 0.3 0.3 0.3 0.3 1
S1 -0.26 0 0 0 0 1
S2 -0.21 0 0 0 0 0.26 1

Table 12: The entries of correlation matrix RIM . The values are taken from Gatzert and
Martin (2012) and Eckert et al. (2016) who have estimated the correlation between stocks
and interest rate r based on monthly data from 01/1988 to 07/2011. The correlations
between bond classes hi and interest rate r are originally from Liang et al. (2011).

Rating χ o Γ
AA 0.9581 0.0072 0.0181
A 0.7553 0.0141 0.0126

BBB 0.5865 0.0258 0.0113
BB 0.4406 0.0781 0.0454

Table 13: Parameters for the Vasicek (1977) processes modeling the hazard rates depend-
ing on the bond rating. The values are again taken from Eckert et al. (2016).

gested in section 2 for investing seven units into an equally weighted portfolio specified

as uinitial = (1, . . . , 1)T ∈ Rn. f true is evaluated on the basis of a Monte Carlo simulation

with 5,000,000 paths and it results in capital requirements of f true (uinitial) = 1.525 and

fSF (uinitial) = 1.309 resulting in a relative error of −14.20%. Following the procedure

described in section 2, seven scenarios can be identified which are presented in Table

14. Evaluating the goodness of the performance, we again take into account the shift

presented in Eq. (18). Figure 4 presents the outcomes for h ∈ [−1, 1]. There, we obtain a

similar result as in section 3: The standard formula is not capable of approximating the

true risk reasonably underestimating the portfolio risk, and sensitivities are also not re-

flected correctly. An extension by m = 1 orthogonal convexity scenario overcomes one of
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i Asseti xOC
1i xOC

2i xOC
3i xOC

4i xOC
5i xOC

6i xOC
7i

1 B1 0.0119 0.0115 -0.0147 0.0033 -0.0127 -0.0127 0.0056
2 B2 -0.0044 0.0121 -0.0155 0.0021 -0.0137 -0.0137 0.0004
3 B3 -0.0718 0.0174 -0.0239 -0.0010 -0.0213 -0.0213 0.0042
4 B4 0.0557 0.0039 0.0009 0.0119 -0.0001 -0.0001 -0.0005
5 B5 0.0534 0.0032 0.0018 -0.0163 -0.0072 -0.0072 -0.0005
6 S1 -0.0100 0.0364 0.0424 0.0018 -0.0266 -0.0266 -0.0104
7 S2 0.1814 -0.0845 0.0090 -0.0018 0.0815 0.0815 0.0013

Table 14: Scenarios for the definition of the approximation function gm(u) in the setting
of Eckert et al. (2016).

these problems reflecting the true risk at uinitial and also first order sensitivities correctly.

Extending the regulatory risk calculation by m = 2 orthogonal convexity scenarios even

allows for an inspection of non-marginal portfolio changes by reflecting the second order

sensitivities of f true at least in some subspace. With these observations, we have seen

Figure 4: SCRs on the basis of the different risk measurement functions evaluating unew(h)
as in Eq. (18) with the parameters in the internal model as reported in Eckert et al.
(2016).

that the presented approach is robust to changes of the underlying true risk measurement

function, making it applicable for a wide range of risk functions.
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