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Abstract

Socially responsible investing (SRI) continues to gain momentum in the finan-
cial market space for various reasons, starting with the looming effect of climate
change and the drive toward a net-zero economy. Existing SRI approaches have in-
cluded environmental, social, and governance (ESG) criteria as a further dimension
to portfolio selection, but these approaches focus on classical investors and do not
account for specific aspects of insurance companies. In this paper, we consider the
stock selection problem of life insurance companies. In addition to stock risk, our
model set-up includes other important market risk categories of insurers, namely in-
terest rate risk and credit risk. In line with common standards in insurance solvency
regulation, such as Solvency II, we measure risk using the solvency ratio, i.e. the ra-
tio of the insurer’s market-based equity capital to the Value-at-Risk of all modeled
risk categories. As a consequence, we employ a modification of Markowitz’s Port-
folio Selection Theory by choosing the “solvency ratio” as a downside risk measure
to obtain a feasible set of optimal portfolios in a three-dimensional (risk, return,
and ESG) capital allocation plane. We find that for a given solvency ratio, stock
portfolios with a moderate ESG level can lead to a higher expected return than
those with a low ESG level. A highly ambitious ESG level, however, reduces the
expected return. Because of the specific nature of a life insurer’s business model,
the impact of the ESG level on the expected return of life insurers can substantially
differ from the corresponding impact for classical investors.
JEL classification: G11, G22, G32
Keywords: Socially responsible investments, Life insurance companies, Portfolio
optimization, Solvency regulation.



1 Introduction

Orienting capital investment towards environmental, social, and governance (ESG) as-

pects, so-called “Socially Responsible Investing” (SRI), is increasingly regarded in society,

business, and politics as an important instrument for tackling urgent problems such as

climate change. Insurance companies - especially life insurers - and pension funds are

among the most important investors in our economic system. Compared to the capital

investment of a classical investor, the capital investment of an insurance company takes

place against the background of its future benefit payments. In the context of most long-

term obligations of life insurers and pension funds, uncertainties about capital market

developments, especially the interest rate landscape as well as guarantees and options

included in products, are of great importance for their investments.

This paper addresses SRI in the context of life insurers’ investment decisions. To this

end, we consider the stock portfolio selection problem including ESG as a third dimension

coupled with risk and expected return (cf. Utz et al. 2014, Gasser et al. 2017, Pedersen

et al. 2020). In addition to stock risks, we model interest rate risk using an affine short

rate model and credit risks using a reduced-form model (cf., e.g., Eckert et al. 2016). In

our modeling framework, we consider an insurer who holds a portfolio of bonds and has

long-term obligations, the latter being calibrated in light of historical guaranteed interest

rates in German life insurance (cf. Berdin & Gründl 2015). Furthermore, we incorporate

a solvency constraint. According to Solvency II, this constraint is based on the 99.5%

Value-at-Risk. Our findings show that the incorporation of an ESG constraint has no or

only slight implications for expected return as long as this constraint is not too ambitious.

Restricting the portfolio to stocks with very high ESG levels (and at the same time high
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profitability) increases concentration risk. Therefore, when facing a solvency constraint,

striving for a high ESG level means that the insurer needs to de-risk the portfolio by

accepting a larger share of less profitable stocks. Our results indicate that a change in

the ESG level has—for a given risk level—larger implications for expected return if the

risk is measured using the Value-at-Risk instead of the standard deviation.

The relevant literature for this topic can be divided into three strands. Firstly, there

are articles that examine the integration of SRI into the portfolio selection of “classical”

investors. The work by Utz et al. (2014), Gasser et al. (2017), and Pedersen et al.

(2020) add a third dimension to Markowitz’s (1952), portfolio theory accounting for social

sustainability in addition to expected return and risk. These papers use data for mutual

funds (Utz et al.) and individual stocks (Gasser et al., Pedersen et al.) respectively,

and thus allow for the identification of portfolios that are not dominated in the given

three-dimensional sense. Regarding the investor, the three papers follow the basic model

of Markowitz (1952). The investor thus has no pre-existing portfolio or commitments,

and she measures risks based on standard deviation. Other work on integrating SRI

into portfolio optimization also assumes an investor without a pre-existing portfolio or

commitments (see Ballestero et al. (2012); Bilbao-Terol et al. (2012, 2013); Cabello et al.

(2014), Calvo et al. (2016), Vo et al. (2019), and Liagkouras et al. (2020)). These works

use different methods for optimization, such as deep learning (Vo et al.), and consider

risk measures beyond standard deviation (e.g. Conditional Value-at-Risk in Bilbao-Terol

et al. (2012, 2013); Vo et al. (2019)).

The second strand of literature related to our topic is about the application of Markowitz’s

portfolio theory to (life) insurers’ investment decisions. This includes the integration of

liabilities into the investor’s model (Hart & Jaffee 1974) or the identification of optimal
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portfolios in terms of asset-liability management (Keel & Müller 1995). Recent work

examines investment strategies of life insurers and accounts for additional aspects, such

as the multi-period maturity structure of life insurance liabilities (Huang & Lee 2010),

default risk, and surplus sharing (Gatzert 2008, Bohnert et al. 2015, Eckert et al. 2016).

Fischer & Schlütter (2015) investigate the optimal equity ratio and capital adequacy of

an insurance company for which capital requirements are calculated using the Solvency

II standard formula. The authors show that the impact of risk weights in the standard

formula on the optimal strategy and the resulting solvency level is very heterogeneous

across different insurers and depends, specifically, on the correlations between their asset

and liability risks. Braun et al. (2018) consider an insurance company that identifies an

efficient portfolio in terms of Markowitz’s portfolio theory, subject to a capital require-

ment constraint. If this capital requirement is determined using the standard formula,

efficient portfolios may become inadmissible, and the firm must select a portfolio that is

actually inefficient. In a theoretical paper with empirical calibration, Berdin & Gründl

(2015) investigate the impact of interest rate risk on the solvency of life insurance com-

panies. For this purpose, the authors model the typical investment structure as well as

the structure of the in-force business of life insurance companies in the EU and consider

how the risk situation reacts to different interest rate scenarios. Building on this, Kub-

itza et al. (2021) examine the impact of rising interest rates on the lapse behavior of life

insurance policyholders and the effects on insurers’ liquidity.

The third stream of relevant literature addresses the extent to which SRI adds value to

companies in general and to insurance companies in particular. Nofsinger & Varma (2014)

show in an empirical study that ESG-compliant mutual funds offer better performance

than conventional mutual funds in market crises but perform worse in non-crisis periods.
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Friede et al. (2015) provide a comprehensive overview of more than 2000 previous studies

on the impact of ESG on corporate financial performance, measured in different dimen-

sions. In 90% of the studies considered, the influence is non-negative. The second-order

meta-analysis of Busch & Friede (2018) confirms the positive relation between ESG and

corporate financial performance. According to the meta-analysis of Von Wallis & Klein

(2015), most research studies find that socially responsible investments yield similar re-

turns to conventional investments. The meta-analysis of GDV (2021) concludes that ESG

orientation can reduce the investment universe and thus increase portfolio concentration,

but also allows for better management of systematic risks and for reducing tail risks.

Polbennikov et al. (2016) show that corporate bonds with high ESG ratings have slightly

lower spreads, i.e. high ESG ratings positively influence the value of bonds. Jakubik &

Uguz (2021) use a sample of European insurance companies to empirically investigate

whether the introduction of green bond firm policies by European insurance companies

has a positive impact on their market values. Using a four-factor model, Bannier et al.

(2019) show in an empirical study accounting for the period 2003-2017 that ESG activ-

ities reduce corporate risk, but that an investment portfolio focused on companies with

high ESG scores has negative excess returns. In the context of a discounted cash flow

model, Giese et al. (2019) examine transmission channels from ESG investment informa-

tion to firm values and performance. Their empirical tests support the existence of such

transmission channels.

The remainder of the article is structured as follows. Section 2 presents the portfolio

selection approach including the ESG level as a third dimension. Section 3 defines the

stochastic processes of the risk drivers and the set-up of the model insurer. Section

4 describes the data basis for the model calibration and specifies the model insurer’s
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portfolio selection problem. Section 5 presents our results. Section 6 provides a discussion

on our analysis and possible extensions, and section 7 concludes.

2 Portfolio selection with a responsibility dimension

Our starting point is the classical portfolio selection approach of Markowitz (1952), which

we extend by a responsibility dimension similar to the procedure in Gasser et al. (2017)

and Pedersen et al. (2020). Consider an investment universe of nS ∈ N stocks. The multi-

variate risk distribution of the nS stocks’ annual returns is defined by the nS-dimensional

random vector r = (r1, ..., rnS
)T. Let µ = (µi)

nS
i=1 = E[r] denote the vector of expected

returns and let Σ = (Σi,j)
nS
i,j=1 ∈ RnS×nS denote the covariance matrix of r. For each

stock, moreover, the degree of responsibility is measured by an ESG score taking values

between 0 (lowest possible level of responsibility) and 100 (highest possible level). The

vector θ ∈ RnS contains the ESG score of each stock. The vector w = (wi)
nS
i=1 ∈ RnS

with
∑nS

i=1wi = 1 denotes the weight of stock i = 1, ..., nS within the insurer’s portfolio.

As a benchmark situation, we first describe how portfolio selection is conducted by a

“conventional” insurer that does not care about the responsibility dimension of the stock

portfolio. In line with the classical Markowitz portfolio selection, the insurer chooses w

by maximizing the expression

α · µTw − β · wTΣw (1)

with α ≥ 0 being a preference parameter for expected return and β ≥ 0 a preference

parameter of risk aversion towards stock risks. The identification of the efficient frontier
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starts with determining a Minimum Variance Portfolio (MVP)1 with weight vector wMVP

and a Maximum Return Portfolio (MRP)2 with weight vector wMRP. The weight vectors

of portfolios on the efficient frontier are linear combinations of wMVP and wMRP between

the MVP and MRP. Our procedure for the identification of the efficient frontier is in line

with Gasser et al. (2017, p. 1186) and ensures that the portfolios on the efficient frontier

do not include extreme positive or negative weights to individual stocks; some limited

extent of short selling is, nevertheless, possible (specifically in the MVP). We now turn

to an insurer that cares about social responsibility of stock investments. In line with

Gasser et al. (2017), we measure the degree of a stock portfolio’s responsibility by the

weighted sum θTw.3 Gasser et al. (2017) extend the target function in (1) by including

the portfolio’s degree of responsibility, θTw, multiplied by a preference parameter for

responsibility, γ > 0:

α · µTw − β · wTΣw + γ · θTw (2)

Hence, Gasser et al. receive a three-dimensional capital allocation plane of feasible op-

timal portfolios with the three axes expected return, risk, and responsibility. In our

analyses later on, we will focus on a cross-section of the three-dimensional plane along

1To identify the MVP, we solve (1) with a = 0 and b = 1. Gasser et al. (2017, p. 14) present the
weight vector w solving the first-order condition in closed form.

2Given short-selling restrictions, the MRP is defined by wi = 1 for the stock i with the highest
expected return and wj = 0 for all other stocks.

3In section 4, social responsibility is measured by the Refinitiv ESG company score, which ranges
between 0 and 100 and reflects the degree to which a company achieves the requirements defined by
Refinitiv in various fields. The expression θTw aggregates the portfolio-wide degree of achievement in
terms of a weighted average. Pedersen et al. (2020) suggest a more general approach for calculating the
portfolio’s aggregate responsibility level; their approach can reflect the fact that investors may specifically
dislike low ESG values.
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the responsibility axis. To this end, we identify the selected portfolio which adheres to a

responsibility constraint to the level θ0:

α · µTw − β · wTΣw → max

such that θTw = θ0 (3)

The efficient frontier is then identified analogously as for the conventional investor: we

identify the minimum variance portfolio subject to the responsibility constraint, MVPθ0 ,
4

as well as the maximum return portfolio subject to the constraint, MRPθ0
5. The efficient

frontier of portfolios respecting the responsibility constraint is obtained through linear

combinations of the weight vectors of the MVPθ0 and MRPθ0 . Finally, we add a solvency

constraint to the portfolio selection problem. To this end, the function

w 7→ CapR(w) (4)

reflects how the stock portfolio w influences the insurer’s regulatory capital requirement.

In section 3, we will specify the function CapR(w) in a way that the capital requirement

takes additional risks besides stock risks into account (namely interest rate and credit

spread risks). In line with Braun et al. (2017), we will focus on the selection of the stock

portfolio and consider any other risks as unchangeable background risks. We add the

4To this end, we solve (3) with α = 0 and β = 1 by maximizing the corresponding Lagrangian.
5To identify MRPθ0 , we consider problem (3) with α = 1 and β = 0. This problem is linear and can

be solved using the simplex method.
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insurer’s equity capital E(0) as a fixed variable, and introduce the solvency constraint by

means of the solvency ratio achieving at least the desired level s0, i.e.

E(0)

CapR(w)
≥ s0 (5)

Inequality (5) can be added as a (further) constraint to problems (1) and (3). Setting

up the Lagrange function for the problems above, we can deduce the following objective

function:

Π : α · µTw− β ·wTΣw− λ1

(
θ0 − θTw

)
− λ2 (E(0)− s0CapR (w))− λ3(1−

nS∑
i=1

wi) (6)

In summary, the selected stock portfolio w is characterized by the following attributes:

Expected stock portfolio return: µPF = µTw =

nS∑
i=1

µiwi (7)

Std. dev. of stock portfolio return: σPF =
√
wTΣw =

√√√√ nS∑
i,j=1

Σi,jwiwj (8)

ESG level: θPF = θTw =

nS∑
i=1

θiwi (9)

Solvency ratio: sPF =
E(0)

CapR(w)
(10)

The decision variables in our model are the entries of w. Equations (7) – (10) point out

that our key target variables, i.e. the attributes of the portfolio, can be expressed as a

function of w, while Equations (7) and (8) fit the standard equations from Markowitz’

Portfolio Selection Model. Given that the total budget constraint equals one, that is,∑nS

i=1 wi = 1, the portfolio optimization problem can be solved in the framework of

Gasser et al. (2017).
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3 Modeling the insurer’s risk landscape

3.1 Risk driver dynamics

In terms of risk drivers in an insurance company, we focus on stock and bond price risks,

with the latter comprising default risk. Similar to Gatzert & Martin (2012), Berdin &

Gründl (2015) and Eckert et al. (2016), we employ stochastic processes for modeling risk

driver movements. For each stock i ∈ {1, ..., nS}, a geometric Brownian motion models

how the stock price evolves over time t measured in years:

dSi(t) = µ̃iSi(t)dt+ σ̃iSi(t)dWS,i(t) (11)

with µ̃i and σ̃i being parameters for drift and volatility and WS,i being a standard

Brownian motion under the real-world probability measure. The Brownian motions

WS,1, ...,WS,nS
are correlated with correlation matrix R̃ = (ρ̃i,j)

nS
i,j=1.

The entries of the random vector of annual stock returns, r = (r1, ..., rnS
)T, are defined

as6

ri =
Si(1)− Si(0)

Si(0)
, i = 1, ..., nS (12)

6The returns in Equation (12) account for dividend payoffs.
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Moreover, the elements of the expected return vector µ and the covariance matrix Σ from

section 2, µi and Σi,j, are given by7

µi = eµ̃i − 1

Σi,j = eµ̃i+µ̃j ·
(
eρ̃i,j σ̃iσ̃j − 1

)

for all i, j ∈ {1, ..., nS}. We employ a reduced-form credit risk model for nB defaultable

bonds. The default event of bond j is modeled by the first jump of a doubly stochastic

Poisson process (Cox process), with the stochastic default intensity being modeled by a

Vasicek process hj(t), cf. (Eckert et al. 2016, p. 386).8 Also, the short rate of interest

rates, r(t), is modeled by a Vasicek process, which is given by

dr(t) = κ · (r̄ − r(t)) dt+ ζdWr(t)

dh1(t) = η1 ·
(
h̄1 − h1(t)

)
dt+ Γ1dWh1(t)

...

dhnB
(t) = ηnB

·
(
h̄nB

− hnB
(t)

)
dt+ ΓnB

dWhnB
(t)

where κ and ηi are the speed of mean reversion, r̄ and h̄i are the long-term mean levels,

and ζ and Γi denote the instantaneous volatilities. We assume that in the default case,

a constant rate δR of the bond’s market value will be recovered, cf. Duffie & Singleton

(1999) and Eckert et al. (2016, p. 385). We consider Brownian motions under the risk-

7These equations follow from the expectation of Si(1) and covariance of Si(1) and Sj(1). For more
details, cf. Oksendal (2003, p. 62 f.).

8Modeling the default intensity with a Vasicek process leads to the drawback that modeled spreads
can become negative, which is not possible in practice. The drawback could be ruled out by using another
model for the default intensity, such as the model of Cox et al. (1985). However, given that the insurer’s
portfolio includes only long positions of bond investments, spread risk is driven by increases of default
intensities, meaning that the possibility of negative credit spreads in the model should not have a major
impact on our results.
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neutral measure Q for valuation purposes, and under the real-world measure P for risk

measurement purposes.

3.2 The insurer’s balance sheet structure

In the proposed setup of the insurer’s balance sheet, the asset side at time t consists of

the value of stock investments S(t) and the value of the bond investments B(t). The

liability side is given by the value of the technical reserves L(t), and, as a residual, the

insurer’s equity capital E(t).

We first describe the insurer’s cash flows resulting from fixed-income bond investments

as well as life insurance contracts. These cash flows are modeled on an annual basis

for the next 50 years, i.e. cash flows arise at times t ∈ {1, ..., T} years with T = 50

years. Firstly, for each bond j ∈ {1, ..., nB}, let ttmj ∈ {1, ..., T} be the bond’s time

to maturity. Conditioned on not having defaulted at time t, the bond pays couponj if

t ≤ ttmj and, in addition, a face value normalized to 1 if t = ttmj. The market value

of bond j ∈ {1, ..., nB} at time t, conditioned on having not defaulted yet, is given by

(Eckert et al. 2016, p. 385)

Bj(t) =

ttmj∑
k=t+1

couponj · p̄j(t, k) + p̄j(t, ttmj) (13)

with

p̄j(t, T ) = EQ
[
exp

(
−
∫ T

t

(
r(u) + (1− δR)hj(u)

)
du

)]
(14)

denoting the price at time t of a defaultable zero coupon bond with maturity T > t and

hazard rate process hj.
9

9A closed-form representation of p̄j(t, T ) can be found in Eckert et al. (2016, p. 385).
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Secondly, the insurer has a back-book of life insurance contracts which is constructed

similarly as in Berdin & Gründl (2015). For simplicity, we disregard surplus participation,

surrenders, and future new business. In each year between 1996 and 2020, a cohort of

policyholders concluded an endowment life insurance contract; the cohorts are numbered

with an index k running from 1 (contract inception in 1996) to 25 (contract inception in

2020). At contract inception, there are l0 policyholders. Each policyholder is 40 years old

and pays an annual premium to the amount of 1 monetary unit for each year that he or she

survives within the upcoming 25 years (saving period). Subsequently, the expected cash

flows are determined based on the assumption that the number of living policyholders

follows expectations starting from the year of contract inception of each cohort. Within

the saving period, the policyholder account of cohort k, accountk, evolves from year t to

year t+ 1 in expectation as

accountk(t+ 1) = (accountk(t) + l0 · tp40) · (1 + rg(k)) (15)

with accountk(0) = 0, rg(k) being the guaranteed interest rate of cohort k and tp40

denoting the probability of a 40-year-old person surviving for the next t years.10 At the

end of the saving period, i.e. 25 years after contract inception, the existing policyholder

account of cohort k, accountk(25), is converted into a lifelong annuity. The annual payoff

10The guaranteed interest rate is set to the maximum technical interest rate of German life insur-
ance. We set rg(k) = 4% for cohorts starting 1996 - 1999, rg(k) = 3.25% for cohorts starting 2000
- 2003, rg(k) = 2.75% for cohorts starting 2004 - 2006, rg(k) = 2.25% for cohorts starting 2007-
2011, rg(k) = 1.75% for cohorts starting 2012-2014, rg(k) = 1.25% for cohorts starting 2015-2016,
and rg(k) = 0.9% for cohorts starting 2017-2020. Details are provided at https://aktuar.de/unsere-
themen/lebensversicherung/hoechstrechnungszins/Seiten/default.aspx.
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for policyholders of cohort k on aggregate is denoted by annuityk and obtained based on

the actuarial equivalence principle

accountk(25) =
ω−65∑
t=1

tp65 · (1 + rg(k))
−t · annuityk (16)

where ω denotes the maximum attainable age of policyholders. Let CFins(t) denote the

insurer’s net cash outflow due to life insurance contracts with t = 0, 1, 2, ... corresponding

to the end of year 2021, 2022, etc. In this sense, the age of policyholders of cohort k at

time t is 66 + t− k. The insurer’s expected cash outflow from life insurance is11

CFins(t) =

min{t+1;25}∑
k=max{1;66+t−ω}

t−k+1p65 · annuityk −
min{25;t+2}∑

k=t+2

l0 · 26+t−kp40 (17)

for t = 0, ..., 23, and

CFins(t) =

min{t+1;25}∑
k=max{1;66+t−ω}

t−k+1p65 · annuityk (18)

for t = 24, ..., ω − 40. The time-t value of liabilities is obtained as

L(t) =
ω−40∑
k=t

CFins(k) · p(t, k) (19)

with p(t, k) denoting the price at time t of a non-defaultable zero-coupon bond that

matures at time k ≥ t.12 The initial number of policyholders l0 is calibrated such that

L(0) takes a desired value, cf. section 4.2. Figure 1 presents the cash flows CFins(k) per

future year k = 1, ..., 50 referring to L(0) = 1.

11Equations (17) and (18) are explained in the Appendix.
12Cf. Eckert et al. (2016, p. 385) for closed-form representation of p(t, k).
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Figure 1: Expected net cash outflows (annuity payoff minus premium income) from the
portfolio of endowment life insurance contracts with subsequent annuity contracts; the
number of policyholders at contract inception l0 is normalized such that L(0) = 1; after
year end 2020, no new insurance contracts are signed.

Let S(t) =
∑nS

i=1 Si(t) and B(t) =
∑nB

j=1 Bj(t) denote the market value of the insurer’s

stock and bond portfolios at time t. The time-t value of the insurer’s total assets is given

by the sum of the values of stocks and bonds,

A(t) = S(t) +B(t) (20)

and the time-t value of the insurer’s equity capital is

E(t) = A(t)− L(t) (21)
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3.3 Value-at-Risk

In line with Solvency II, the capital requirement is determined as the 99.5% Value-at-Risk

of unexpected losses in equity capital over a one-year time horizon. Let

XAL = B(1)− L(1)− E [B(1)− L(1)] (22)

denote the insurer’s unexpected losses due to credit risk and interest rate risk. Interest

rate and default risk are the risk sources for XAL, while interest rate also influences L(1).

In accordance with Equation (4), we denote the capital requirement depending on the

stock risk portfolio as

CapR(w) = q0.5% (E(1)− E(0))− E (E(1)− E(0))

= q0.5%

(
S(0) · (r− µ)T w +XAL

)
(23)

with q0.5%(.) denoting the 0.5% percentile of a random variable.

4 Model calibration and specification

4.1 Description of the data

In line with Gasser et al. (2017), all data about stocks, bonds, ESG scores, and general

information on the firm level have been collected from Thomson Reuters Refinitiv Eikon13,

13It is worth noting that the data coverage of Refinitiv currently includes more than 10,000
global companies. Refinitiv encompasses about 76 countries, spanning major global and regional
indices. These scores transparently and objectively account for company’s relative ESG perfor-
mance, commitment, and effectiveness across 10 main themes, which include: emissions, environmen-
tal product innovation, human rights, and shareholders, according to publicly reported data. Source:
https://www.refinitiv.com/en/financial-data/company-data/esg-data
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which provides an unbiased and independent external measure of the social responsibility

of various companies. Regarding stock returns, credit spreads, and interest rates, we

consider the period from September 2011 to September 2021 on a monthly basis. Overall,

we collected data of about 12,080 stocks, which include those with ESG scores and those

without ESG scores. Since our focus is on the European Monetary Union (EMU), we

matched all firms in the EMU with the 12,080 stocks, which resulted in a total of 950

firms. For further analysis concerning the stock data and because of missing variables, we

collected a sub-sample of the Total Return Index (TRI) of all 731 firms in the European

Monetary Union (EMU) for which the TRI is observable for at least 96 months. The

stock return for month t is calculated as

TRI(t)− TRI(t− 1)

TRI(t− 1)
(24)

with TRI(t−1) and TRI(t) being the TRI in the midst of consecutive months. To measure

the degree of a firm’s social responsibility, we use the Refinitiv ESG company score, which

evaluates publicly available information on 10 ESG-relevant fields and aggregates them

into a single number. The Refinitiv ESG score ranges between 0 (lowest degree of social

responsibility) and 100 (highest degree). Of the 731 firms in our sub-sample, 599 firms

have a Refinitiv ESG score. We attribute the score 0 to the remaining 132 firms.14 Table

1 classifies the stocks in our analysis according to ESG score, while Table 2 categorizes

the stocks in our analysis according to countries in the European Monetary Union, and

finally Table 3 provides classification based on the industrial sectors.

The Tables provide descriptive statistics which account for the number of stocks, monthly

mean returns µ̄, standard deviations of monthly returns, σ̄, and mean ESG scores, θ̄.

14This is consistent with Gasser et al. (2017, p. 1184).
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Table 4 describes stock returns and ESG scores on the firm level. The average monthly

returns per firm range between -3.06% and 5.08%; the average monthly return of all firms

is 1.46%. The standard deviation of monthly returns per firm range between 1.72% and

49.11%; the average standard deviation across firms is 10.12%.

Table 1: Data set descriptive statistics — ESG score levels

Score range Grade No. of stocks µ̄ σ̄ θ̄
from to

91.667 100.000 A+ 6 1.20% 7.14% 92.6
83.333 91.667 A 57 1.14% 5.58% 86.5
75.000 83.333 A- 89 1.17% 5.86% 79.1
66.667 75.000 B+ 112 1.31% 5.26% 70.8
58.333 66.667 B 79 1.32% 5.35% 62.6
50.000 58.333 B- 87 1.32% 5.08% 54.7
41.667 50.000 C+ 64 1.53% 5.30% 46.1
33.333 41.667 C 43 1.65% 5.44% 37.0
25.000 33.333 C- 31 1.84% 5.27% 29.4
16.667 25.000 D+ 16 2.17% 6.00% 21.2
8.333 16.667 D 7 1.86% 6.74% 12.7
0.000 8.333 D- 8 1.71% 6.04% 5.9
n/a n/a Not available 132 1.81% 4.98% 0.0

To collect bond data, we have prioritized EMU firms according to their total assets. From

each of the largest firms, we have selected a bond that was issued at least 8 years ago in

EURO and expires in 10 years or later (as of 2021). If several of those bonds exist, we

have chosen the one with the largest outstanding volume. If all bonds of the firm issued

at least 8 years ago expire in less than 10 years, we have chosen the bond with the longest

time to maturity. For each selected bond, we have gathered yields on a monthly basis

from the last 10 years (to the extent to which they exist). To obtain the credit spread,

we have calculated the difference between bond yield and the 1-month EURIBOR rate of

the respective month. EURIBOR interest rates on a monthly basis for the past 20 years

have been collected from Deutsche Bundesbank.15 Based on the EURIBOR data, we

have estimated the parameters of the Vasicek process for the short rate and have received

15www.bundesbank.de/de/statistiken/geld-und-kapitalmaerkte/ zinssaetze-und-renditen/

geldmarktsaetze-650668
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Table 2: Data set descriptive statistics — EMU countries overview

Country ESG score No. of stocks µ̄ σ̄ θ̄
Austria available 28 1.22% 5.48% 58.6

not available 2 0.86% 5.11% 0.0
Belgium available 41 1.30% 4.35% 52.4

not available 13 1.04% 3.16% 0.0
Cyprus available 1 1.24% 10.86% 85.5

not available 0 1.24% 10.86% 0.0
Finland available 36 1.49% 5.40% 63.6

not available 23 1.65% 4.73% 0.0
France available 124 1.26% 5.47% 63.6

not available 31 1.92% 6.96% 0.0
Germany available 130 1.53% 5.29% 58.2

not available 24 2.49% 6.45% 0.0
Greece available 21 1.30% 12.3% 53.3

not available 9 2.38% 8.07% 0.0
Ireland available 33 1.81% 4.96% 53.5

not available 1 1.46% 6.60% 0.0
Italy available 72 1.41% 6.44% 58.3

not available 17 1.55% 7.05% 0.0
Luxembourg available 12 1.39% 5.98% 57.4

not available 1 1.77% 4.39% 0.0
Malta available 2 1.49% 8.60% 48.3

not available 0 1.49% 8.60% 0.0
Netherlands available 38 1.56% 5.63% 65.9

not available 4 1.03% 6.09% 0.0
Portugal available 11 1.11% 6.58% 63.1

not available 0 1.11% 6.58% 0.0
Spain available 50 1.05% 5.57% 68.1

not available 7 1.71% 9.38% 0.0

κ = 0.00841, r̄ = −0.0113, and ζ = 0.00141. Likewise, based on the credit spread data,

we have estimated the Vasicek parameters for each bond.16 In total, we have created a

sample of 42 bonds. Years to maturity were rounded to an integer number, given that our

cash flow model is constructed at an annual level. Details of the bonds and estimation

results are provided in Table 5. Finally, we employ the 2018-2020 periodic mortality table

from the Federal Statistical Office of Germany.17

16We have estimated the Vasicek parameters via the maximum likelihood estimation method. For
details, see, for example, Smith (2010), van den Berg (2011) and Chaiyapo & Phewchean (2017).

17www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-
Lebenserwartung/Publikationen/ publikationen-innen-periodensterbetafel.html
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Table 3: Data set descriptive statistics — industry sectors.

Industry sector ESG score No. of stocks µ̄ σ̄ θ̄
Communication Services available 48 0.83% 5.28% 59.2

not available 6 3.01% 8.85% 0.0
Consumer Discretionary available 61 1.47% 5.92% 62.6

not available 14 1.35% 5.58% 0.0
Consumer Staples available 37 1.06% 4.12% 62.2

not available 10 1.28% 4.75% 0.0
Energy available 24 0.64% 7.20% 65.6

not available 0 0.64% 7.20% 0.0
Financials available 75 1.10% 7.34% 58.2

not available 13 1.65% 3.97% 0.0
Health Care available 58 1.90% 5.15% 55.5

not available 17 1.96% 9.29% 0.0
Industrial available 127 1.48% 5.70% 59.1

not available 23 1.51% 6.00% 0.0
Information Technology available 47 2.14% 5.81% 56.2

not available 30 2.32% 6.24% 0.0
Materials available 53 1.36% 6.24% 65.3

not available 6 2.20% 5.39% 0.0
Real Estate available 33 1.13% 4.72% 59.5

not available 9 1.28% 3.20% 0.0
Utilities available 36 1.51% 5.23% 66.3

not available 4 1.49% 7.91% 0.0

Table 4: Description of stock return and ESG data on the firm level

Number of Mean Std. dev. Min Max
firms

Monthly stock returns per firm
Average return 731 1.46% 0.97% -3.06% 5.08%
Std. dev. of returns 731 10.12% 4.91% 1.72% 49.11%
ESG score 599 60.232 19.425 2.19 93.57

4.2 Specification of the insurer’s portfolio selection problem

Based on a sample of 731 firms, the covariance matrix of the random vector of stock re-

turns r is of a very high dimension, and solving the portfolio selection problems described

in section 2 comes with severe computational issues.18 To circumvent these issues, we do

not analyze the insurer’s portfolio selection problem for the complete sample of stocks,

but instead take two approaches. Our first approach is to construct portfolios based on

stock indices. For this, we construct a stock index for each country presented in Table 2.19

18Cf. Bai & Shi (2011) and Gasser et al. (2017, pp. 1185 f.).
19We omit Cyprus and Malta since there are only 1 and 2 firms respectively in these countries.
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Table 5: Description of bond data; ηj is the mean reversion of the hazard rate, h̄j is the
average hazard rate, and Γj is the instantaneous volatility of the hazard rate

Mean Std. dev. Min Max
Years to maturity 10.0238 13.1863 1.0000 89.0000
Coupon 4.7155 1.4343 2.6610 8.1250
Estimate of ηj 0.0583 0.0329 0.0117 0.1332
Estimate of h̄j 0.0412 0.0108 0.0268 0.0786
Estimate of Γj 0.0011 0.0012 0.0004 0.0079

The returns of each country’s stock index are calculated as an equally weighted average

of the stock returns of all firms located in this country. Likewise, we construct portfolios

for each ESG score presented in Table 1 and for each industry according to Refinitiv.20 In

the first approach, the sample of bonds consists of 10 bonds from 10 different sectors with

the largest outstanding volume. Our second approach leans on the procedure of Gasser

et al. (2017) for simplifying the calculations. We draw a random sample of nS = 50

stocks from the universe of 731 stocks and a random sample of nB = 10 bonds (sampling

is without replacement; all stocks and bonds have the same selection probability).

For both approaches, we then estimate the covariance matrix of the stock index returns

or individual stock returns and analyze the portfolio selection problem from section 2.

Specifically, we identify the optimal portfolio in terms of the problem (3) with the solvency

constraint in Inequality (5) and the capital requirement defined by Equation (23). As

specified in section 4.2, we consider various responsibility levels θ0 and solvency ratios

s0. In the second approach, we repeat the process of random sampling, estimation and

portfolio optimization 20 times and summarize the 20 results for the stock portfolio’s

expected returns and the insurer’s capital requirement using the mean figures.21 The

time-0-value of the stock portfolio and the insurer’s initial equity capital are both fixed

20The level of Refinitiv industries is more granular than the level of sectors presented in Table 3. The
stocks in our data set are in 11 different sectors and in 24 different industries.

21Given that the solvency constraint in the optimization problem is implemented with a stochastic sim-
ulation, solving the problem is computationally time-intensive. After 20 repetitions, further repetitions
had only a minor impact on the results.
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at one, S(0) = E(0) = 1. The remainders on the insurer’s asset and liability side,

B(0) = L(0), are calibrated such that the equity share e0 = S(0)/A(0) is either 30%,

50%, or 100%.

5 Results

Figure 2 illustrates efficient frontiers based on the stock indices for 24 industries. Specifi-

cally, we have identified the efficient frontier based on responsibility constraints θTw = θ0

with levels of θ0 being 50 and 6022. The efficient frontier relating to the larger responsi-

bility level θ0 = 60 is below the frontier relating to θ0 = 50. Hence, for a given standard

deviation of the portfolio return, a more ambitious ESG value comes with a reduced ex-

pected portfolio return. The points in Figure 2 depict efficient portfolios that account for

a solvency ratio between 160% and 240%. The share of equities in the asset allocation is

fixed at 50%. Compared to a fixed standard deviation of portfolio return, the expected

portfolio return reduces more in the ESG level if the solvency ratio is fixed.23 Hence, for

the given sample of stocks, the Value-at-Risk (underlying the solvency ratio) penalizes

larger risk concentration of high ESG portfolios more strongly than the standard devia-

tion does. Table 6 and Figure 3 present the expected return of portfolios—constructed

with indices—on the efficient frontier. The selected portfolios account for a responsibility

constraint, cf. problem (3), as well as a solvency constraint, cf. line (5). Table 6 reports

the results in terms of two specifications for the risk measure of the solvency constraint:

� Specification A: The Value-at-Risk is calculated based on all modeled risks, includ-

ing stock risks, interest rate risks and credit risks

22It is worth noting that our choice of θ is arbitrary for the purpose of illustration and discussion.
23Note that the points of each solvency ratio on the green line have a smaller x-coordinate than the

corresponding point on the gray line.
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� Specification B: Instead of the solvency level, the standard deviation of the stock

portfolio return, i.e.
√
wTΣw, is fixed at a level sdA;50. We set sdA;50 to the standard

deviation of the stock portfolio return corresponding to the outcome of specification

A with the ESG level being fixed at 50.

Table 6 presents results for both specifications, three different equity shares (30%, 50%,

or 100%) and two solvency ratios (180% or 220%). The 100% equity share implies B0 =

L0 = 0, and hence there are neither interest rate risks nor credit risks. Figure 3 presents

results only for specification B; the three parts of Figure 3 relate to stock indices being

based on industries, countries, or ESG scores respectively. The results indicate that

the surfaces of the efficient frontiers are substantially different for these three types of

indices.24 Nevertheless, the impact of the ESG score restriction on expected returns is

fairly similar for the three indices. In all considerations, the expected return decreases

in ESG values above 50. For stock indices constructed based on countries, the expected

return is higher with an ESG constraint of 50 than with a constraint of 45.

Figure 4 and Table 7 present results for portfolios constructed on the basis of 50 individual

firms. In contrast to stock indices at the level of industries or countries, the selection

of portfolios at the level of individual firms allows for more ambitious ESG values such

as 70 or 80 (cf. Figure 4 vs. Figure 3). Moreover, we find that the selection of firms

allows for higher expected returns. The latter result goes back to the greater selection

variety resulting from the larger sample size for individual firms (nS = 50) compared to

the number of stock indices (24 industries, 12 countries or 12 ESG scores).

24The expected returns are more affected by the solvency ratio when indices are constructed based on
industries compared to indices based on countries or ESG scores. For indices based on ESG scores and
a 30% equity share, a 240% solvency ratio is not attainable.
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For model specification A, the expected return increases from the ESG level being raised

from 50 to 60,25 and decreases for higher ESG levels (cf. Table 7). Conditioned on

an ESG value of 50 and model specification A, the expected return of the life insurer

ranges between 2.25% (for a 30% equity share and 220% solvency ratio—i.e. the solvency

constraint is most restrictive) and 3.00% (for a 100% equity share and 180% solvency

ratio — i.e. the solvency constraint is least restrictive). In the latter case, the absence of

interest rate risks and credit risks together with a mild solvency constraint means that

the insurer is least restricted in its portfolio selection and can choose the most profitable

stocks in terms of expected return. Conditioned on ESG values of 70 or 80, the expected

return varies much less across our considered cases of equity shares and solvency ratios.

The reduction in expected return due to an ambitious ESG value, therefore, is more

pronounced for insurers with a mild solvency ratio and a low extent of risks other than

equity risks, since the ESG condition most affects the freedom of these insurers to select

profitable stocks.

When comparing the results of model specifications A and B, it turns out that speci-

fication A (solvency ratio based on Value-at-Risk of all modeled risk) mostly implies a

lower expected return than specification B (fixed standard deviation of stock portfolio

return) when the ESG level is raised to 70 or above. For example, for a 30% equity share

and with the solvency ratio being fixed at 220%, the expected return reduces from 2.25%

(ESG level 50) to 2.06% (ESG level 80). If the standard deviation is fixed at the level

of the portfolio with an ESG level 50, sdA;50, then the expected return reduces only to

2.19%. The difference between the outcomes of specifications A and B is mainly due to

25According to Table 1, stocks with an ESG score below 50 have a higher average return than those
with an ESG score above 50. However, noting that the latter group includes more stocks and the average
ESG score in our sample is 60.2 (cf. Table 4), there are more degrees of freedom to construct a portfolio
with an ESG score of 60 than with a score of 50.
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the recognition of interest rate risks and credit risks; in the absence of these risks (100%

equity share), the difference is very slight.

Figure 2: Efficient frontiers of portfolios constructed with stock indices of 24 industries.
The curves reflect two ESG levels (gray: 50, green: 60); the points reflect five solvency
ratios (between 160% and 240%).
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Figure 3: Stock portfolios on efficient frontier accounting for solvency ratio restriction
depending on equity share and solvency ratio; portfolios constructed with stock indices
based on industries (I), countries (II) or ESG score levels (III); the solvency ratio is based
on all modeled risks (specification A).
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Figure 4: Stock portfolios on efficient frontier accounting for solvency ratio restriction
depending on equity share and solvency ratio; portfolios constructed based on 50 ran-
domly selected firms; the results are averages of 20 repetitions of the random selection;
the solvency ratio is based on all modeled risks (specification A).

6 Discussion

This section presents a detailed overview of our findings. Our analysis provides a first

step to account for specific aspects of life insurers when studying responsible investment

portfolios, and therefore serves as a benchmark for future extensions, some of which we

discuss below. A main result of our analysis is that the expected return of the invest-

ment portfolio decreases substantially if an insurer aims for a highly ambitious level of

responsibility and needs to stick to a certain solvency ratio. The decrease results from a

larger risk concentration in the investment portfolio. The decrease is particularly strong

if the investment portfolio is constructed with stock indices based on industry sectors

or countries. For stock indices based on ESG scores, the decrease is less severe. Our

analysis could be extended by taking further decision variables into account. These in-
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clude investments in other asset categories (such as bonds, real estate, etc.) as well as

the life insurance product portfolio. It is likely that an increased ESG orientation could

increase risk concentration between asset categories, given that assets are allocated more

uniformly to countries or industry sectors that offer responsible investment opportuni-

ties. If responsibility—and the ways to measure it—becomes more widely accepted as

a common standard, it is likely that the commonality of life insurers’ (as well as other

investors’) portfolios will increase. These increased commonalities could raise the cost of

capital and amplify systemic risks, and thus represent a cost factor that is to be internal-

ized (cf. Nanda et al. 2019, Cerqueti et al. 2021). Overall, insurers should decide on their

responsibility strategy by trading off benefits—such as reputation—and costs. For the

latter, a holistic risk management system is needed that allows for evaluating potentially

increased risk concentrations.

In the present paper, the Value-at-Risk is used in the solvency constraint, whereas the

portfolio selection builds on the variance of the portfolio return. In order to have only

one consistent risk measure in the entire analysis, the variance in the portfolio selec-

tion problem could be replaced by the Value-at-Risk. This replacement, however, would

make the portfolio optimization numerically more elaborate, since the estimation of first

and especially second-order derivatives of Value-at-Risk is demanding (starting points

for the estimation are offered by Gourieroux et al. 2000). The numerical hurdles of the

portfolio optimization could be facilitated using the Expected Shortfall instead of the

Value-at-Risk. Expected Shortfall is used, for example, in the Swiss Solvency Test to

define the capital requirement of insurance companies. The papers by Rockafellar &

Uryasev (2000, 2002), Zhu & Fukushima (2009) provide approaches for portfolio opti-

mization with Expected Shortfall which are less elaborate than those with Value-at-Risk.
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In addition to computational advantages, Expected Shortfall overcomes the Value-at-

Risk’s conceptional deficiency of ignoring potentially extreme tail risks (cf. Weber 2018).

In this context, it would be interesting to model heavy-tails and tail dependencies of

stock returns; to do so, jump-diffusion processes and/or copula approaches could be used

to replace the geometric Brownian motion in our analysis.

7 Conclusion

This paper studies the stock selection problem of life insurance companies that are con-

cerned about the social responsibility of stock investments and face solvency regulation.

We have modeled the balance sheet of the life insurance company, with the asset side con-

sisting of bonds and stocks, while the liability side accounts for life insurance contracts,

with profit participation depending on the value of risky assets. Our model accounts for

important market risk categories, namely stock risk, credit risk, and interest rate risk,

which are modeled using correlated stochastic processes. As a consequence, we perform

numerical case studies to calibrate our model to real data, and hence provide relevant

insights for investment decision-making, policy design mechanisms and the formulation

of insurance regulations. For a given solvency ratio, expected stock returns remain rel-

atively stable when a moderate responsibility target is introduced. A very ambitious

target, however, can reduce expected returns substantially, in particular for insurers with

a low target solvency ratio and with a risk profile that is essentially driven by stock risks.

Overall, we demonstrate that life insurers’ selection of responsible investments is different

from other investors due to their specific risk profile. Our results, therefore, showcase

risk measurement and assessment of ESG investment opportunities given the background
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of life insurers’ overall risk profile at the interface of Solvency II regulations. Further-

more, our analysis highlights the role of Solvency II regulations in fostering ESG-oriented

investments of insurance companies and therefore provides innovative insights into the

benefits of integrating ESG-oriented investments for the insurance industry.
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Appendix: Explanation of Equations (17) and (18)

Table 8 shows the state of the policyholder cohorts at times t = 0, 1, ..., 60, which is the

basis of the sum index k in Equations (17) and (18). Recalling that cohort k = 1 started

in 1996 at the age of 40 and that t = 0 reflects year end 2021, the age of policyholders

of cohort k at time t is 66 + t− k. The first part on the right-hand side of Equation (17)

as well as the right-hand side of Equation (18) reflect annuity payments. Policyholders

receive annuities if their age is at least 65, i.e. if

66 + t− k ≥ 65

⇔ k ≤ t+ 1

All policyholders are dead if their age is greater than or equal to ω; hence, annuities are

paid as long as

66 + t− k ≤ ω

⇔ k ≥ 66 + t− ω

The annuity payoff is reduced by the portion of policyholders who die between age 65

and age 66+ t−k; hence, annuities are only paid to those policyholders who survive after

age 65 the next t− k+1 years. The second part on the right-hand side of Equation (17)
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reflects premium payments. Premiums are paid if policyholders are younger than 65, i.e.

if

66 + t− k ≤ 64

⇔ k ≥ t+ 2

If t + 2 > 25, there is no cohort with premium payments anymore (reflecting the as-

sumption that future new business is disregarded). Premiums are only paid by those

policyholders who survive until age 66+ t− k. Given that their age at contract inception

is 40 and there are 26+ t−k years between contract inception of cohort k and year t, the

premium payment is made by policyholders who survive 26 + t− k years after age 40.
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Table 6: Stock portfolios on efficient frontier accounting for solvency ratio restriction
depending on equity share, target solvency ratio and risk measure. Portfolios are con-
structed using stock indices.

Equity Solvency Risk measure Expected stock portfolio return
share ratio depending on ESG score

45 50 55 60

Stock indices based on industries

100% 180% A (Solvency ratio) 2.34% 2.10% 1.82% 1.55%
B (Standard deviation) 2.24% 2.10% 1.82% 1.55%

100% 220% A (Solvency ratio) 1.94% 1.80% 1.61% 1.36%
B (Standard deviation) 1.93% 1.80% 1.62% 1.37%

50% 180% A (Solvency ratio) 2.33% 2.10% 1.82% 1.55%
B (Standard deviation) 2.24% 2.10% 1.82% 1.55%

50% 220% A (Solvency ratio) 1.91% 1.76% 1.56% 1.32%
B (Standard deviation) 1.88% 1.76% 1.58% 1.34%

30% 180% A (Solvency ratio) 2.16% 1.98% 1.76% 1.48%
B (Standard deviation) 2.12% 1.98% 1.78% 1.51%

30% 220% A (Solvency ratio) 1.71% 1.55% 1.37% 1.16%
B (Standard deviation) 1.67% 1.55% 1.39% 1.18%

Stock indices based on countries

100% 180% A (Solvency ratio) 1.72% 1.78% 1.68% 1.46%
B (Standard deviation) 1.56% 1.78% 1.65% 1.31%

100% 220% A (Solvency ratio) 1.72% 1.78% 1.68% 1.46%
B (Standard deviation) 1.56% 1.78% 1.65% 1.31%

50% 180% A (Solvency ratio) 1.72% 1.78% 1.68% 1.46%
B (Standard deviation) 1.56% 1.78% 1.65% 1.31%

50% 220% A (Solvency ratio) 1.70% 1.78% 1.68% 1.44%
B (Standard deviation) 1.56% 1.78% 1.65% 1.31%

30% 180% A (Solvency ratio) 1.72% 1.78% 1.68% 1.46%
B (Standard deviation) 1.56% 1.78% 1.65% 1.31%

30% 220% A (Solvency ratio) 1.56% 1.76% 1.63% 1.29%
B (Standard deviation) 1.55% 1.76% 1.63% 1.3%

Stock indices based on ESG scores

100% 180% A (Solvency ratio) 1.84% 1.78% 1.71% 1.64%
B (Standard deviation) 1.84% 1.78% 1.70% 1.62%

100% 220% A (Solvency ratio) 1.81% 1.74% 1.66% 1.59%
B (Standard deviation) 1.81% 1.74% 1.66% 1.59%

50% 180% A (Solvency ratio) 1.84% 1.78% 1.71% 1.64%
B (Standard deviation) 1.84% 1.78% 1.70% 1.62%

50% 220% A (Solvency ratio) 1.80% 1.72% 1.64% 1.57%
B (Standard deviation) 1.79% 1.72% 1.64% 1.57%

30% 180% A (Solvency ratio) 1.84% 1.78% 1.71% 1.64%
B (Standard deviation) 1.84% 1.78% 1.70% 1.62%

30% 220% A (Solvency ratio) 1.66% 1.59% 1.53% 1.46%
B (Standard deviation) 1.66% 1.59% 1.52% 1.46%
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Table 7: Stock portfolios on efficient frontier accounting for solvency ratio restriction
depending on equity share, target solvency ratio and risk measure. Portfolios are con-
structed on the basis of 50 individual firms.

Equity Solvency Risk measure Expected stock portfolio return
share ratio depending on ESG score

50 60 70 80

100% 180% A (Solvency ratio) 3.00% 3.09% 2.99% 2.52%
B (Standard deviation) 3.00% 3.14% 3.03% 2.53%

100% 220% A (Solvency ratio) 2.55% 2.65% 2.62% 2.28%
B (Standard deviation) 2.55% 2.80% 2.81% 2.42%

50% 180% A (Solvency ratio) 2.96% 3.06% 2.97% 2.51%
B (Standard deviation) 2.96% 3.12% 3.03% 2.53%

50% 220% A (Solvency ratio) 2.50% 2.60% 2.58% 2.24%
B (Standard deviation) 2.50% 2.74% 2.77% 2.40%

30% 180% A (Solvency ratio) 2.76% 2.89% 2.86% 2.44%
B (Standard deviation) 2.76% 2.99% 2.97% 2.49%

30% 220% A (Solvency ratio) 2.25% 2.35% 2.34% 2.06%
B (Standard deviation) 2.25% 2.45% 2.50% 2.19%

Table 8: States of life insurance cohorts as of year 2021. Cells shaded in green (red; gray)
reflect states in which policyholders pay premiums (receive annuities; are all dead).

Age of policyholders in cohort k,
calculated as 66 + t− k

Time t Year, 2021 + t k = 1 k = 2 k = 3 ... k = 25
0 2021 65 64 63 ... 41
1 2022 66 65 64 ... 42
2 2023 67 66 65 ... 43
...

...
23 2044 88 87 86 ... 64
24 2045 89 88 87 ... 65
...

...
59 2080 124 123 122 ... 100
60 2081 125 124 123 ... 101
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dicators of mutual funds’ environmental responsibility: An application of the reference

point method’, European Journal of Operational Research 236(1), 313–325.

Calvo, C., Ivorra, C. & Liern, V. (2016), ‘Fuzzy portfolio selection with non-financial

goals: exploring the efficient frontier’, Annals of Operations Research 245(1), 31–46.
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